
Exploring Adaptive Agency III: 
Simulating the Evolution of Habituation 

Sensitization 
and 

Peter  M. Todd 
todd~psych.stanford.edu 

Geoffrey F. Mil le r  
geoffrey~psych.stanford.edu 

Department  of Psychology 
Stanford University 

Jordan Hall Building 420 
Stanford, California 94305 USA 

Abs t rac t  

Sensitization a~d habituation, we postulate, both serve the adaptive function 
of cluster-tracking: entraining and exploiting the basic spatic~temporal regularities 
in the environment. To better understand the adaptive pressures shaping cluster- 
tracking, we used a genetic algorithm to evolve simulated creatures controlled by 
neural networks. The creatures make decisions about when to eat in simple sim- 
ulated environments containing 'food' (which raises fitness) and 'poison' (which 
lowers it) based on sensory cues. Food and poison were distributed in randomly- 
occurring clusters of a certain scale fixed for each environment. Sensory input had 
a limited accuracy level fixed for each environment. When sensory accuracy is mod- 
erate and food and poison come in fairly large clusters, certain time-delay feedback 
connections evolve to a~ow cluster-tracking. We ran several simulations for each 
of 6 cluster-scales and each of 7 levels of sensory accuracy. As expected, the av- 
erage number of generations required to evolve cluster-tracking follows a U-shaped 
curve as a function of sensory accuracy, and generally declines as cluster scale in- 
creases. But an asymmetry in this ravine-like surface illuminates some previously 
unsuspected complexities of sensitization and habituation. 

1 Sensitization and Habituation 

Traditionally, sensitization and habituation have been viewed as low-level processes of be- 
havioral adaptation classed together mostly due to their relative simplicity. Both 'merely '  
allow a creature's ongoing behavior to match and exploit current trends in the environ- 
ment. Sensitization causes a generalized increase in neural excitability after presentation 
of a positive (or negative) stimulus, so that  the creature is more likely to approach (or 
avoid) whatever stimulus it receives next. Habituation, on the other hand, is a more spe- 
cific decrease in excitability and responsiveness after repeated encounters with a stimulus 
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that proves unimportant. For example, an octopus will sensitize to the occurrence of food 
and tend thereafter to attack neutral objects placed before it, or if previously shocked will 
tend to shy away from the same neutral objects. A slug which withdraws its eye-stalks 
when first poked and prodded will habituate to the harmless stimuli and soon cease to 
respond to them. 

The adaptive functions of sensitization and habituation can perhaps best be understood 
by viewing these processes as roughly symmetric and complementary means of adjusting 
behavior in a non-random world. As Wells (1968, p. 157) puts it, a creature "can improve 
its performance by taking advantage of the fact that, in the natural world, good and bad 
events do not occur at random. They clump. Predators hang around or go away, food is 
liable to come in batches." Wells goes on to discuss sensitization as a means of dealing 
with this 'dumpiness'; Hollis (1984) speaks similarly about habituation's function. We 
see both habituation and sensitization as fulfilling a more general adaptive function of 
entraining and exploiting statistical structure in the sequence of environmental cues - -  a 
function we call cluster-tracking. 

In our ongoing study of adaptive agency (Miller & Todd, 1990, and Todd & Miller, 1990) 
- -  the generation of adaptive behavior in response to environmental challenges to indi- 
vidual fitness - -  we have found it fruitful to consider sensitization and habituation in this 
more general way as complementary mechanisms for generating adaptive behavior given 
certain spatial or temporal regularities in the environment. Given such regularities, sen- 
sitization can be viewed as a way for azt organism to adaptively increase the probability 
of a specific response when it finds itself in an ongoing situation where that response is 
appropriate. Habituation, conversely, can be seen as a way to adaptively decrease the 
probability of a specific response in an ongoing situation where that response is inappro- 
priate. The main utility of both processes depends on the fact that organisms may know 
the general pattern of regularities that characterize their world more accurately than they 
can perceive the specific current situation. They may use sensitization and habituation 
to generate adaptive sequences of behavior even when their ability to categorize the cur- 
rent environmental situation, and thus to decide the immediate appropriateness of each 
behavior in their repertoire, is compromised. 

We have previously explored the interaction of the adaptive processes of associative learn- 
ing and evolution by simulating the evolution of rudimentary neural-network based crea- 
tures that behave and learn in a simple environment (Todd & Miller, 1990). To inves- 
tigate the proposed cluster-tracking adaptive functions of sensitization and habituation, 
we extended our previous study by adding certain temporal regularities to our simulated 
environments. We expected that the neural networks controlhng the behavior of our 
simulated creatures would come to instantiate the kinds of sensitization and habituation 
appropriate to each environment. By studying the rates and results of this evolution in 
the different environmental situations, we hoped to better understand the nature and 
interactions of these adaptive processes. 
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2 Simulating Cluster-Tracking 

Our current simulation method for studying adaptive agency uses a standard genetic algo- 
rithm to evolve neural network architectures controlling the behavior of simple simulated 
creatures in simulated environments. The environments contain 'food' (which raises fitness 
if eaten) and 'poison' (which lowers fitness if eaten), occurring in some spatio-temporal 
pattern. Both substances have certain perceivable features: in the current study, food 
always smells 'sweet' and poison always smells 'sour.' Thus, creatures whose networks 
adaptively indicate when to eat and when not to eat given the sensory cues they receive 
will typically evolve to dominate the population. 

In this method, a strong genetic specification scheme (as defined by Miller, Todd, & 
Hegde, 1989) interprets each binary genotype as a connectivity constraint matrix which 
directly specifies the nature of each unit and connection in the network architecture. Once 
a network, instantiating the behavior-generating mechanisms of an individual creature, 
has been so constructed, it is evaluated in the simulated world over several time-steps 
representing the creature's lifespan. During each time-step, a creature encounters either 
food or poison. The creature's network then receives sensory input based on the cues 
available to it from the current substance (e.g. its smell), processes that input according 
to its architecture and current weights, generates behavior (e.g. eating) based on the 
activation of its output units, and changes its connection weights based on an unsupervised 
learning rule (e.g. Hebbian association). The effects of the creature's behavior on the 
world and on its own fitness are then registered, and the next time-step begins. After a 
fixed lifespan, the creature dies and its accumulated fitness determines the number of its 
offspring, according to a stochastic fitness-proportionate reproduction scheme with linear 
fitness-scallng. Two-point crossover and point mutation drive the genetic search process. 

The creatures in the current study have 'nervous systems' consisting of just two units. One 
is a motor unit whose activity determines whether or not the creature eats the substance 
available at this time-step. The other unit can be one of several types in the creatures in 
the initial population (another motor unit, a processing 'hidden unit,' or a sensory input 
unit - -  see Todd ~ Miller, 1990), but in practice the evolving creatures rapidly converge 
on incorporating a smell-sensing input unit. In our simulated worlds, environmental noise 
limits the sensory accuracy of these units: in an environment allowing 75% accuracy, for 
example, creatures will generally mistake food for poison (and vice-versa) 25% of the time. 
Sensory units are linear, while motor units are logistic with activations from -1 to +1. 

The creatures' networks can be fully interconnected, which with two units just means 
having a forward connection from the sensory unit to the motor unit, and a one-time- 
step-delay recurrent connection from the motor unit back to the sensory unit. In addition, 
each unit can have a one-time-step-delay recurrent connection back onto itself, and a bias. 
Each of the recurrent connections carries the act~ivity of the sending unit at the previous 
time-step to the receiving unit. The connections and biases can all evolve a positive or 
negative (starting) weight of 16 different magnitudes (from 0.0 to 4.1). Furthermore, 
the genotype specifies which of the four connections and two biases are learnable (with 
Hebbian association). 
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In our previous studies of the evolution of associative learning, food and poison were 
distributed randomly in the environment. In such a higgledy-piggledy world, there was 
no spatic*temporal structure for sensitization or habituation to exploit. To set up adap- 
tive pressures for the evolution of these cluster-tracking processes, we had to introduce 
'clumpiness' in the distribution of food and poison in the environment. First, a random 
sequence of food and poison was generated as before, but now each occurrence of food or 
poison in this sequence was replaced by a run of N instances of food or poison to create 
an extended 'clump' in the final world-sequence. We call N the clump-scale parameter 
because it determines whether the clumpiness happens on a small or large scale. For 
example, if the original random sequence is "++...+.. ' ,  and the clump-scale is 3, the 
sequence of food ("+") and poison (".") that this particular creature would encounter 
is " + + + + + +  ......... + + +  ...... ". The minimum (and modal) number of consecutive occur- 
rences of the same substance (the smallest clump length) is N (here 3), the mean clump 
length is 2N, and the maximum may be very large (up to the number of time-steps in the 
creature's hfespan). 

If sensory accuracy lies somewhere between 50% and 100%, so creatures receive some 
accurate information and some inaccurate, then an internal mechanism that can exploit 
whatever structure exists in the environment would prove adaptive. That is, if a creature 
could tell that it was in a food clump m e.g. that the past few things it encountered 
were food - -  then it might reasonably predict that the next substance encountered will 
also be food, and so should be eaten, even if environmental noise makes it smell like 
poison. It would 'sensitize.' Similarly, if the creature has been eating food for a while, 
but begins to smell more poison than food, it might predict that it is now in a poison- 
patch, and should abstain from eating for a while, again even if the next substance or 
two encountered appears to be food. It would 'habituate.' Thus, in worlds with clumpy 
structure that allow moderate sensory accuracy, both sensitization and habituation would 
prove adaptive, and we expect some mechanism enabling these processes to evolve. 

Evolving a kind of rudimentary memory to do cluster-tracking might be the simplest 
means of instantiating sensitization and habituation in our simple creatures. Time-delay 
recurrent connections would allow units to accumulate and use positive or negative ac- 
tivation that indicates the nature of the current patch. For instance, a self-feedback 
connection of an appropriate weight on a sweet-smell sensory unit in a noisy environment 
would gradually accumulate more and more positive activation as it encounters more and 
more food in a food patch. After a few encounters, its activation would be high enough 
that even if the current input indicated a sour smell, the unit would still turn on as if 
it smelled something sweet, indicating food. Such a mechanism is likely to work best 
when feedback weights can be genetically specified with at least moderate precision, so 
we allowed 16 possible weight-magnitudes, in contrast with the 4 we used in previous 
studies. 

3 S imulat ion  R e s u l t s  

We explored the relationships between clump-scale, sensory accuracy, and time to evolve 
adaptive cluster-tracking. In initial simulations, we discovered that large clump-scales 
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were important for the evolution of the creatures' sensitization and habituation, so we 
used clump-scale values of t, 5, 10, 20, 40, and 80. We fixed the creature lifespan at 
1000 timesteps, and ran each of the clump-scales in worlds with smell-sense accuracies 
of 55%, 60%, 70%, 75%, 80%, 90%, and 95%, yielding a 6x7 table of environments. In 
each of these 42 environments, we evolved at least 5 populations (10 for 75% of the 
cases) of 100 creatures until the average population fitness passed a threshold indicating 
that adaptive cluster-tracking had evolved. If this threshold had not been reached by 2000 
generations, we stopped the simulation at this point. Finally, we used the average number 
of generations taken to pass the threshold (or 2000 generations for those populations that 
did not exceed the threshold) as our measure of the time taken to evolve cluster-tracking 
in each environment. 

We expected to see two trends. First, for a given clump-scale, we expected the time 
to evolve cluster-tracking to follow a U-shaped curve with respect to sensory accuracy, 
just as we discovered with the evolution of simple associative learning in our previous 
studies (Todd & Miller, 1990). This U-shaped relation can be understood through a 
simple thought-experiment. In the limiting case of 50% (chance) accuracy, no veridical 
information is available for either adaptive moment-to-moment behavior or for adaptive 
cluster-tracking, so time to evolve cluster-tracking will be effectively infinite. In the 
opposite limiting case of 100% (perfect) accuracy, a fixed connection of the proper valence 
between the sensory unit and motor unit suffices for perfectly adapted behavior, so there 
is no adaptive pressure for cluster-tracking to evolve and, again, time to evolve it will be 
effectively infinite. But for moderate sensory accuracies, cluster-tracking is both easy to 
use and advantageous to evolve, resulting in fast evolution times. 

The second trend we expected was that, for a given fixed sensory accuracy, larger clump- 
scales should allow faster evolution of cluster-tracking. Longer clumps yield a higher ratio 
of clump-exploitation-time (benefit) to clump-entrainment-time (cost), and so will make 
cluster-tracking relatively more advantageous and increase the adaptive pressure to evolve 
this ability. That is, with longer clumps, creatures can spend more time in a clump, using 
their built-up evidence about the nature of that clump to overcome environmental noise, 
and less time switching between clumps, which always results in some behavioral errors 
before sufficient evidence has been accumulated. In the limiting case of clump-scale 1, 
there is no environmental regularity for cluster-tracking to exploit, so again time to evolve 
cluster-tracking should be effectively infinite. 

What we actually found was the family of curves shown in Figure 1. For each given 
clump-scale, there is indeed a U-shaped evolution curve, and for the high accuracies at 
least, time to evolve cluster-tracking goes down as clump-scale increases. But there is an 
interesting interaction that we did not expect, between high clump-scales and low sensory 
accuracies, which results in the long evolution times seen in the front left quadrant of the 
surface. This rise in turn creates the diagonal 'ravine' of lowest evolution times running 
from left rear to front right in the figure, rather than symmetrically down the middle of 
the figure as expected. 

We believe that this apparent anomaly results from using the same fixed lifespan for all 
environments. Smaller clump-scales insure that each creature experiences a large 'sample 
size' of food and poison clumps. By the Law of Large Numbers~ the variance between 
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creatures in the ratio of food to poison encountered will be small. By contrast, larger 
clump-scales yield higher variance between creatures for this ratio, so add a kind of noise 
to the evolutionary process. Creatures with bad network designs, such as those biased 
to eat at every time-step, might still do very well in such worlds, e.g. if they are born 
into one that happens to contain more large food-clumps than poison-clumps. These 
erroneous designs may spread through the population, and it could take longer for natural 
selection to distinguish them from the ultimately more adaptive cluster-trackers. But in 
small-clump-scale worlds, these creatures would encounter roughly equal proportions of 
food and poison, and so would never be able to do very well Evolution would quickly 
eliminate them and select for adaptive cluster-tracking. 

We investigated this hypothesis by evolving 10 populations in a world with clump-scale 80 
and 70% smell-sense accuracy, but increasing lifespan from 1000 time-steps to 4000. With 
this change, average time to evolve cluster-tracking does indeed decrease significantly, 
from 187 to 52 generations. This suggests that if we hold the ratio of clump-scale to 
lifespan constant, the rise in the front left quadrant of Figure 1 would disappear. Further, 
these creatures encounter as many clumps as the original 1000-step-lifespan creatures did 
in worlds with clump-scale 20, who took longer on average (61 generations) to evolve 
cluster-tracking. Thus, controlling for number of clumps encountered, evolution time 
seems to decrease as clump-scale increases, as we postulated. 

This is not to say, though, that we should hold the ratio of clump-scale to lifespan constant. 
Real creatures in real environments do not generally have the luxury of adjusting their 
lifespan to the size of food-patches they are likely to encounter. When lifespans are limited, 
our finding that large clump-scales can actually slow down the evolution of cluster-tracking 
may be more relevant to natural situations. 

Our next step for studying the evolution of cluster-tracking is to categorize and analyze 
the actual network architectures found in each population. To this end, we are developing 
methods of determining the "average creature" in a population and following its behavior 
throughout its lifespan. We hope in this way to gain a better understanding of the network 
dynamics that evolve to track environment dynamics, and the ways in which structure in 
the world can be entrained and exploited by the evolved mechanisms of adaptive agency. 
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Figure 1. Simulation results illustrating the effect of adaptive pressures controlled by the clump- 
scale and sensory accuracy parameters on time to evolve adaptive cluster-tracking. Vertical 
height represents time required to evolve cluster-tracking, ranging from 0 to 2000 generations. 
The horizontal axis represents sensory accuracy, ranging from 50% (on the left) to 100% (on the 
right), in increments of 5%. The depth axis represents clump-scale, ranging from 1 (at the back) 
to 80 (at the front). The surface shown was linearly interpolated from the average evolution 
times for the 5 or 10 runs completed for each of 6 accuracy levels (55%, 60%, 70%, 75%, 80%, 
90%, and 95%) and 7 clump scales (1, 5, 10, 20, 40, and 80). 


