

Technological evolution as self-fulfilling prophecy: From genetic algorithms to
Darwinian engineering
By Geoffrey Miller

Published as:
Miller, G. F. (2000). Technological evolution as self-fulfilling prophecy. In J. Ziman (Ed.),
Technological innovation as an evolutionary process (pp. 203-215). Cambridge, UK:
Cambridge U. Press.

Introduction

Engineering and computer science are undergoing a Darwinian revolution. In the last ten
years, computer scientists have hijacked the idea of “technological evolution”,
transforming it from a metaphorical model of historical change into literal methods for
doing evolutionary engineering using explicit processes of random variation and
selective replication inside computers. These methods, including genetic algorithms,
genetic programming, and evolution strategies, have attracted exponentially increasing
interest as powerful ways of finding good engineering solutions to hard, complex, real-
world problems.

Surprisingly, these developments remain almost unknown to scholars interested in
evolutionary models for technological progress and to evolutionary epistemologists
interested in more general applications of Darwinian theory to human culture and
knowledge. Conversely, computer scientists working on genetic algorithms or genetic
programming know very little about studies of technological innovation that use explicitly
evolutionary models. This mutual ignorance is unfortunate, because there is so much
each field can learn from the other. Genetic algorithm research, for example, has
developed powerful insights into the way that evolution works as a stochastic search
method for exploring design spaces and finding good solutions, and these insights may
hold even for technological evolution outside the computer. On the other hand, studies
of evolutionary processes in invention, market competition, and historical change reveal
a rich, diverse, multi-level interplay between design and selection that may hold valuable
lessons for attempts to automate this process. This chapter is a first attempt at match-
making between these two fertile fields.

How computer science turned Darwinian

When computers were slow, expensive, and unreliable, they were no good for simulating
evolution. But in the early 1960s, they became fast enough for evolutionary biologists
(see Lewontin, 1974) to try solving some of the harder problems in theoretical population
genetics using simulation rather than paper-and-pencil proof. Typically, this meant
simulating how the allele frequencies of just one or two genes might change over
evolutionary time in response to various selection pressures.

 Biologists made no attempt to use such evolutionary simulation to actually design
something useful in the computer. However, some researchers in the field of Artificial
Intelligence realized that the same kinds of computer programs could be used as an
engineering method rather than a tool for scientific simulation. In the mid-1960s, Fogel,
Owens, and Walsh (1966) suggested that if real biological intelligence evolved through

real evolution, perhaps simulated intelligence could evolve through simulated evolution -
that is, by evolutionary programming.

In the late 1960s and early 1970s, John Holland (1975) and his students at University of
Michigan developed, a new type of computer program called a genetic algorithm.
Populations of bit-strings - strings of zeros and ones - could be randomly generated to
form an initial generation, and then each bit-string could be interpreted as a particular
design according to some development scheme. Designs could be tested according to a
fitness function that determined how good they were for solving a particular problem.
The bit-strings that made good designs get to have many copies - "offspring" - in the
next generation, while those that make bad designs are eliminated. And so on.

Holland (1975) proposed a general formalism for representing evolutionary processes,
showing how they could be implemented inside a computer, and proving various
theorems about how those processes will operate as search procedures for finding good
solutions. The most important “schema theorem” showed that if bit-strings can
recombine their sub-strings (“schemata”) by a method analogous to biological
"crossover", then selection on individual bit-strings is sufficient to increase the frequency
of good schemata and drive out the bad. This theorem suggested that genetic
recombination rather than mutation generated the most important variations that
selection acts on during evolution. Accordingly, Holland’s students made the study of
recombination a major focus in genetic algorithms research.

Meanwhile, in Germany, engineers such as Rechenberg (1973) and Schwefel (1977)
were independently developing a type of Darwinian engineering called
“evolutionsstrategie”. For example, they constructed an aerofoil composed of many
moveable sub-segments that could be adjusted and immediately tested in a wind tunnel.
To optimize the aerodynamics of the evolving wing, they used a carefully controlled
mutation and selection process to generate and test better wing shapes. They then
generalized this method into a stochastic optimization technique centered around
continuous mutation and testing of a single design.

None of these methods made much progress until computers became much faster and
cheaper in the 1980s. The problem in all evolutionary simulation using ordinary
sequential computers is that the time it takes to produce a single “run” of evolution
equals the time required to test each individual design, multiplied by the number of
designs in the population, multiplied by the number of generations that the population
evolves. With population sizes around 100 to 1000, and around 100 to 1000
generations per run, a typical genetic algorithm run requires somewhere between 10,000
and one million evaluations to produce a decent result. For a complex problem, testing
each solution using 1970s computer technology might take several minutes, so that an
entire evolutionary run would require about a year of computer time.

Genetic algorithms became viable as research and engineering tools only when
computers became fast enough for each fitness evaluation to take only a few seconds.
Also, the development of massively parallel computers (such as the revolutionary CM-2
Connection Machine, with over 64,000 processors) cuts out one of the loops, because
an entire population can be evaluated at once, with each processor testing a different
individual. Once it became possible in the 1980s for risk-averse computer science
graduate students to complete hundreds of simulation runs during their Ph.D. program,
the field of evolutionary computation flourished.

In 1985 was the first of a successful biannual series of International Conferences on
Genetic Algorithms (see Grefenstette, 1985). The first genetic algorithm textbook
appeared in the late 1980s (Goldberg, 1989) just in time for this author to take one of the
first graduate courses on the subject at Stanford University. This course was given by
one of Holland’s students, John Koza, who shortly afterwards published a magnum opus
(Koza, 1992), detailing how a modification of the genetic algorithm concept could be
used to evolve Lisp programs to solve various computational tasks. Instead of
representing designs using bit-strings, genetic programming applied selection and
recombination directly to the Lisp programs, which can be represented as tree-like
structures.

Since 1992, when the key journal, Evolutionary Computation, was founded, the whole
field has taken off academically. The half dozen main journals complement the
proceedings of nearly 30 periodic conferences, grouped in a number of regular series.
The field has also produced three main textbooks (Goldberg 1989; Davis 1991; Mitchell
1996), which are used in the more than 30 graduate courses on evolutionary
computation currently taught around the world.

In addition to research on genetic algorithm theory, research has flourished on real-world
applications in a number of fields, including industrial design such as aerospace,
automobiles, robotics, civil engineering, and factory layout, control systems engineering
such as job shop scheduling, neural network design, and system identification,
pharmaceutical engineering such as molecular design and protein folding, and financial
optimization in spreadsheet programs. Several corporations have recently begun
marketing genetic algorithm software packages for corporate and personal use, or
consulting about genetic algorithm applications.

How genetic algorithms work

Classic genetic algorithms (e.g. Holland, 1975, 1992; Goldberg, 1989) have five key
components: a genotype format that specifies how genetic information is represented in
a data structure; a development scheme that maps that information into a phenotypic
design; a fitness function that assigns a fitness value to each phenotype; a set of
genetic operators that modify and replicate the genotypes from one generation to the
next; and a set of evolutionary parameters such as population size and mutation rate
that govern how evolution runs.

The genotype format specifies the type of data structure that will represent the genetic
information. In place of the 4-letter nucleotide alphabet of DNA, genetic algorithms
mostly use binary "bit-strings". Typically, these have a fixed length (e.g. 1000 bits),
interpreted as a fixed number of "genes" (e.g. 100 genes) each composed of a fixed,
equal number of bits (e.g. 10 bits per gene). In the last few years, however, researchers
have explored a wider variety of genotype formats, including strings of real numbers,
branching tree structures, matrices, directed graphs, and so forth. The initial generation
of genotypes is usually produced randomly, for example by assigning a zero or one with
equal probability at each point in a bit-string.

The development scheme maps a genotype into a phenotype according to some
algorithm or recipe. Thus each gene might be interpreted as a binary number specifying
some parameter of a possible engineering solution. For example, 20 genes might be

sufficient to specify (or “parameterise”) a design for a jet engine turbine blade, which
could then be selected for its aerodynamic efficiency in a simulation. Alternatively,
successive segments of a bit-string might be interpreted as successive rows in a matrix
specifying possible connections between the processing units in a neural network (Miller,
Todd, & Hegde, 1989). In more recent work on evolving dynamic neural networks
capable of controlling robots that pursue or evade one another, we used a much more
complex development scheme where some genes specify the spatial locations of
neurons in a 2-D “brain”, whilst other genes specify their interconnections11.

The trick in genetic algorithms is to find schemes that do this mapping from a binary bit-
string to an engineering design efficiently and elegantly, rather than by brute-force.
Good development schemes map from small genotypes into complex, promising
phenotypes that already obey fundamental design constraints. Bad schemes require
large genotypes and usually produce phenotypic monstrosities. Of course, the smaller
the genotype a development scheme can use to specify a set of phenotypes to be
searched, the faster evolution can proceed.

The fitness function maps from phenotypes into real numbers that specify their "fitness",
and hence the probable number of copies the underlying genotype will be awarded in
the next generation. The fitness function is the heart of the genetic algorithm: it is at
once the environment to which all designs must adapt, and the grim reaper (or
“selective pressure”) that eliminates poorly adapted designs. As with development
schemes, fitness functions can range from the trivial to the astoundingly complex. Early
exploratory research on genetic algorithms often used literal mathematical functions,
such as y = x² - cos x , to map from a real-number phenotype (x) into a fitness score (y).
For real applications, however, fitness functions are usually computer simulations of how
a phenotype design would perform at some task. In our research on evolving pursuit and
evasion strategies (Cliff & Miller, 1996), for example, each neural network pursuer was
tested in about a dozen simulated chases around a virtual arena and awarded fitness
points for catching different randomly selected opponents as fast as possible. In a civil
engineering application, a fitness function might assign points to bridge designs based
on their structural integrity, estimated cost, traffic capacity, and resistance to wind-
induced oscillations.

If the fitness function does not realistically reflect the real-world constraints and demands
that the phenotypic designs will face, the genetic algorithm may deliver a good solution
to the wrong problem. But if each fitness evaluation takes too long, a genetic algorithm
that relies on millions of evaluations to make evolutionary progress will not be practical.
Most difficult in practice is the “multi-objective optimization” problem: giving just the right
weight to each design criterion in the fitness function so the evolved designs reflect
intelligent trade-offs rather than degenerate maximization of one criterion over all others.
For example, giving too much weight to the traffic capacity criterion in a bridge-
evaluation program might result in 1000-lane bridges with no structural integrity and
exorbitant cost.

In effect, the fitness function must embody not only the engineer’s conscious goals, but
also her common sense. This common sense is largely intuitive and unconscious, so is
hard to formalize into an explicit fitness function. Since genetic algorithm solutions are
only as good as the fitness functions used to evolve them, careful development of
appropriate fitness functions embodying all relevant design constraints, trade-offs, and
criteria is a key step in evolutionary engineering.

The genetic operators copy and modify the genotypes from one generation to the next.
Classic genetic algorithms used just three operators: fitness-proportionate reproduction
- genotypes are copied in proportion to the fitness scores that their phenotypes received;
point mutation - each bit in a bit-string is flipped from a 1 to a 0 or vice-versa, with some
very low probability per generation; and crossover - "offspring" are formed by swapping
random genotype segments between two randomly matched "parents". Mutation and
crossover thus generate "blind variation", and fitness-proportionate reproduction
provides "selective retention" (see Campbell, 1960).

Much genetic algorithm research has focused on making these basic genetic operators
work well together, and trying new, quasi-biological genetic operators such as "gene
inversion", "duplication", "deletion", and "translocation". Getting the right balance
between mutation and selection is especially important. If selection pressures are too
strong relative to mutation, genetic algorithms suffer from "premature convergence" on
to a genotype that was better than any other in the initial, random generation, but which
is far from optimal.

The typical evolutionary problem of getting stuck on a "local fitness peak" can be
especially acute with genetic algorithms, where crossover between nearly identical
parents does not introduce significant genetic variation, and the vast majority of
mutations tend to make even suboptimal designs worse, so get "selected out" almost
immediately. Significant genetic diversity can be preserved by speading the population
across a simulated geographic area, allowing sub-populations to evolve different
solutions and then exchanging innovations via migration and crossover (Cliff & Miller,
1996). Alternatively, if "assortative mating" is favoured, so crossover is programmed to
occur more frequently between similar "parents", then the population tends to split apart
into divergent "sub-species" with different adaptations (Todd & Miller, 1997).

Finally, the evolutionary parameters determine the general context for evolution and the
quantitative details of how the genetic operators work. Classic genetic algorithm
parameters include the population size (usually between 30 and 1000 individuals), the
number of generations for the evolution to run (usually 100 to 10,000 generations), the
mutation rate (usually set to yield around one mutation per genome per generation), the
crossover rate (usually set around 0.6, so three-fifths of genotypes are recombined, and
two-fifths are replicated intact), and the method of “fitness scaling” (e.g. how differences
in fitness scores map onto differences in offspring number).

Deciding the best values for these parameters in a given application remains a black art,
driven more by blind intuition and communal tradition than by sound engineering
principles. For example, there is a trade-off between population size and generation
number: the larger your population, the fewer generations you can run for a given
amount of computer time. The genetic algorithm community has no consensus yet
about how best to allocate these computer cycles.

Some strengths and weaknesses of genetic algorithms

Conjointly, the five components outlined above determine a "design space" (chap ?).
Genetic algorithms search these spaces using a massively parallel, stochastic,
incremental strategy called "evolution". They are not an engineering panacea. Their
performance is only as good as their ability to search a particular design space efficiently

and inventively. This in turn depends critically on a host of subtle interactions between
genotype formats, development schemes, genetic operators, fitness functions, and
evolutionary parameters. Genetic mutations should tend to produce slight but detectable
alterations in phenotypic structure that open the way for cumulative improvement.
Genetic crossover should tend to swap functionally integrated parts of phenotypes to
yield new emergent properties and behaviors. And so on.

For very simple problems, one can be a bit sloppy about bringing all five components
into alignment, because genetic algorithms are rather robust search methods for small
design spaces. But for hard problems and very large design spaces, designing a good
genetic algorithm is very, very difficult. All the expertise that human engineers would
use in confronting a design problem -- their knowledge base, engineering principles,
analysis tools, invention heuristics, and common sense -- must be built into the genetic
algorithm. Just as there is no general-purpose engineer, there is no general-purpose
genetic algorithm.

Most obviously, there is no general-purpose development scheme because different
applications require completely incommensurate types of designs. As we saw in chapter
X, the design spaces of possible bridges, neural networks, proteins, factory layouts, jet
turbines, computer circuits, and corporation financial strategies cannot be translated into
a common language, and even if they could be, searching that generic design space
would be vastly less efficient that searching a more focused subset.

Genetic algorithms tend to work best when the design space they are searching has
already been rather well-characterized or, ideally, fully formalized into a kind of design
grammar. For example, genetic programming (Koza, 1992) seems to work well because
the design space of computer programs in a particular programming language is clearly
structured by that language’s formal grammar. Genetic programmers favour languages
like Lisp because the "S-expressions" that constitute Lisp programs are branching tree
structures that remain interpretable when their end-nodes or sub-trees are mutated or
crossed over.

 By contrast, there is no design grammar yet for fully re-useable ground-to-orbit
spacecraft -- indeed, there remain wildly disparate strategies for solving this difficult
problem, each of which require some components that go beyond current technology.
In such a case, using a genetic algorithm to generate promising new design solutions
would be vastly more difficult than in genetic programming. Still, it might be useful,
because by forcing engineers to think about characterizing the design space as a whole
rather than perfecting one particular solution, the discipline of setting up the genetic
algorithm may yield new insights and ideas.

One of the most disturbing features of genetic algorithms is that they often produce
solutions that work, but one cannot quite understand how or why they work. Whereas
traditional engineers are constrained to working on designs that they more or less
understand, genetic algorithms select only for performance, not for clarity, modularity, or
comprehensibility. Like insect nervous systems that have been under intense selection
for millions of generations to get the most adaptive behavior out of the smallest, fastest
circuits, artificial neural networks evolved for particular tasks (see Miller, Todd, & Hegde,
1989; Husbands, Harvey, Cliff, & Miller, 1994) almost never do so in a way that makes
any sense to human minds that expect modular decomposition of function.

Is this a problem? It depends more on the social, cultural, and legal context of
engineering in particular domains. The patent office may be sceptical of a design
delivered by a genetic algorithm if you cannot explain why it works. A client corporation
may reject an optimal marketing strategy designed by a management consultancy using
a genetic algorithm if you cannot explain why this strategy makes sense. The
automaticity of the genetic algorithm and the opacity of its solutions may create
problems of accountability, liability, safety, and public confidence. Also, well-understood
solutions can be easily modified and generalized to other problems and other contexts,
whereas specifically evolved solutions may not.

On the other hand, animal and plant breeders have been content for thousands of years
to use artificially selected products without knowing exactly how they work. Likewise,
many traditional technologies such as Japanese sword-making (see Martin, this volume)
evolve by trial and error experimentation and cultural imitation, without any theoretical
understanding of why the production techniques work. Computer scientist Danny Hillis
has commented that he would rather fly on an airplane with an autopilot evolved through
a genetic algorithm than one with a human-engineered autopilot. The reason: the
evolved autopilot’s very existence was at stake every time it confronted the simulated
emergencies used to test it and breed it, whereas the human designer’s existence was
never at stake. For better or worse, genetic algorithms break the link between
innovation and analysis that has been considered a fundamental principle of modern
engineering.

Fitness evaluation in Darwinian engineering

As I noted earlier, the crucial practical issue for real "Darwinian engineering" is whether
the process of evaluating candidate designs can be automated. Fitness evaluation is the
computational bottleneck in simulated evolution. For example, in our project on pursuit
and evasion, it took 95-99% of the computer time (Cliff & Miller, 1996). Applying the
genetic operators to breed one generation from the previous generation is usually
computationally trivial by comparison. This is because physical reality has a lot of detail
that needs simulating, and most serious applications require evaluation in many tests
under many different conditions. Consider the computational requirements for
evaluating the aerodynamic efficiency and stability of a single jet fighter in simulation
under a reasonable sample of different altitudes, speeds, weather conditions, and
combat scenarios. Now multiply by the million or so evaluations needed to evolve a
decent jet fighter design. Serious Darwinian engineering seems to require prohibitive
amounts of computer power.

Is there any alternative to doing all fitness evaluation in simulation? Engineers didn’t
always test things in computers. Technological progress used to depend on visualizing
or sketching design solutions, mentally imaging how they would fare in various tests, and
hand-building prototypes for testing in the real world. Before the 20th century, much of
engineering and architecture also depended on building scale models and testing them
in various experiments. Prototyping and model-making are very efficient ways to let the
physics of the real world do much of the evaluation work for you. But how could this
sort of real-world testing be incorporated into an automated fitness evaluation method for
Darwinian engineering?

A possible future strategy for Darwinian engineering is suggested by a project at the
University of Sussex (Husbands, Harvey, Cliff, & Miller, 1994) to use genetic algorithms

to evolve computer vision systems for guiding mobile robots. To evaluate how well each
vision system would work, they originally had the robots moving around in a virtual
environment, using very time-consuming computer graphic ray-tracing methods to
determine what visual input the robot would get at each position in its little world. They
decided to let the real world take care of the ray-tracing for them, and put a video
camera on to a gantry that could move around in a tabletop model of the test
environment. Each robot vision system to be tested was downloaded to a small
computer that could translate the robot's simulated movements into gantry movements,
with the digital video input then being used directly as the input to the simulated robot
vision system. Apart from graduate students needing to untangle the video input cable
once in a while, this hybrid between simulated evolution and real-world testing could
automatically evaluate a few dozen robot vision systems per day, and led within a few
weeks to the evolution of a system capable of navigating towards triangles in preference
to circles.

Carried to its logical extreme, this strategy interfaces with combinatorial chemistry,
where innumerable variant molecular entities are synthesized automatically by the
random combination of segments drawn from different populations, and then screened
automatically for the part they play in a particular chemical or biological process.
Effective new catalysts, enzymes, therapeutic drugs, electronic materials, etc. can thus
be discovered and systematically improved by an evolutionary process that is closely
akin to a genetic algorithm.

New methods of computer-controlled manufacturing, robotic assembly, rapid
prototyping, and automated lab testing may allow candidate designs to be incarnated
and evaluated without human intervention. Automating certain aspects of research and
development in this way will be much more challenging than automating the
manufacture of standardized products, because candidate designs are worth evaluating
only if they are unique. Modifying factories to do automated prototyping, testing, and
fitness evaluation will be a major challenge for Darwinian engineering.

Another alternative is to put human judgment into the evaluation loop. Interactive
artificial selection can be used to guide evolutionary search through a design space.
Thus, computer graphics artists (e.g. Sims, 1991; Todd & Latham, 1992) have applied
human aesthetic judgement to evolve fantastic images based on compact "genotypes"
combining mathematical formulae and computer-graphic primitives, with the advantage
that favoured "phenotypes" can be easily copied and recreated without having to store
an entire multi-megabyte image.

Darwinian engineering could extend this sort of artificial selection in two main ways.
First, human engineers could use their common sense and expertise to rate candidate
designs for their overall plausibility as they are generated by a genetic algorithm on the
computer screen in front of them, with computer simulation to test design details.
Moreover, the computer could keep track of the human responses to candidate designs,
learning how to make its own ratings - for example by training a neural network to
emulate human judgment. The outcome might then be an automated evaluation function
that combined common sense assessments with sound engineering principles.

A more revolutionary way to put humans in the evaluation loop is to use consumer
judgments directly to evolve customized products through interactive, online Darwinian
engineering. Modern businesses usually try to make money by second-guessing

average consumer taste, manufacturing a limited range of products to span that taste,
and trying to attract mass sales. Genetic algorithms with interactive evaluation may
permit a radically different strategy that integrates design, manufacturing, marketing, and
sales in a single system.

Suppose individual consumers could log on to a company’s "interactive catalogue"
directly. Each product line would be a genetic algorithm for evolving a customized
product design. It would start with an initial population of candidate designs that could be
rated by the consumer, and then mutated and recombined to yield successive
generations of new, improved designs. Allow each consumer to evolve their preferred
designs, subject only to certain safety, functional, and legal requirements, and which are
capable of being manufactured profitably by the automated production system. A few
minutes of interactive evolution should lead to a most-preferred design, needing only to
be priced and debited to a credit card number before being manufactured and shipped to
the consumer. Up-to-data consumer-preference data could be fed into the interactive
catalog so as to bias the interactive evolution for each consumer towards areas of
design space that have recently proven popular with other consumers with the same
demographics and tastes.

This sort of interactive evolutionary consumerism would be most appropriate for fairly
low-tech, easily modularized products such as wallpaper, textiles, clothes, jewelry,
furniture, toys, holiday packages, and standard financial services. Yet even for relatively
high-tech, complex products that must function safely and reliably, like automobiles,
cardiac pacemakers, nuclear-powered aircraft carriers, and automated stock-trading
systems, where companies normally market only a few carefully-optimized, thoroughly-
tested designs, interactive evolution might allow consumers to explore the design space
around these designs and observe the fitness trade-offs and constraints for themselves.

In any case, by bringing consumers directly into the design loop as agents of interactive
evolutionary selection, the diversity, originality, and richness of human material culture
might be substantially increased. One benefit is that it would introduce an analogue of
sexual selection. Consumers select products for more than their functional fitness; they
also impose various aesthetic and symbolic criteria. These two modes of selection
produce quite different evolutionary dynamics and can powerfully complement each
other as search and optimization processes (Miller & Todd, 1995). For example,
selection for apparently maladaptive "sexual" traits is a very efficient way for populations
to escape from local optima in which purely functional selection would otherwise leave
them trapped. By allowing consumers to bring their apparently frivolous aesthetic
judgments to bear on product development, they may stumble upon promising new
areas of design space that more utility-minded engineers may have overlooked.

The future of technological evolution

Most historians, psychologists, and engineers who have studied technological evolution
in the past agree that the evolutionary process has always been "automated" to some
extent, both in the unconscious mental processes of inventors searching design spaces
for innovative solutions (see chapter X, Carlson, Perkins), and in the competitive market
processes the sift good product designs from bad (Nelson, Stankiewicz, Vincenti). The
rise of genetic algorithms as engineering methods adds a third, more explicit, type of
automation: the evolution of designs inside computers. Clearly, the utility of genetic
algorithms will depend heavily on their ability to complement these other two types of

highly efficient, massively parallel search processes – human creativity and economic
markets.

There are good reasons for expecting this complementarity to prosper. Minds and
markets are excellent at combining vast amounts of diverse, distributed information
under multiple constraints into workable solutions (e.g. ideas that solve the problem or
prices that clear the market). Genetic algorithms do something similar, combining vast
amounts of information about the fitnesses of different design components (i.e. genes
and their phenotypic effects in the simulation) into good designs that are at least locally
optimal.

But genetic algorithms work by principles rather different from human creativity and
market competition. Human minds are not as good as computer simulations at detailed,
quantitatively accurate fitness evaluation. And markets are not nearly as fast, or as free
from social, cultural, political, and legal biases. There is a niche then, between minds
and markets, for genetic algorithms to contribute to technological evolution. This will
probably lead to a division of labour in technological evolution, where problem-solving is
often automated using genetic algorithms, but problem-framing still depends on
individual and group creativity, and solution-verification still depends on market
processes and social history. Engineers will have to think more like selective breeders
who design fitness functions, set population parameters, and oversee evolution inside
computers and automated design-testing facilities.

Such a development sounds strange, but would simply mark a return to the earliest,
most important technological revolution in human history: the domestication and
selective breeding of animals by Neolithic pastoralists, followed by the domestication
and selective breeding of plants by farmers around five thousand years ago. The early
pastoralists and farmers did not know how pre-existing biosystems - wolves, wild cattle,
seed-headed grasses, etc. - worked or where they came from; they simply substituted
their own selection pressures for those of nature, and reaped the benefits. As the
complexity of manufactured technologies begins to approach that of natural biosystems,
we may be forced to revert to this humbler form of engineering qua selective breeding.
This exceptional millennium, in which humans were able to comprehend their own
technologies sufficiently to design them through engineering principles, may be drawing
to a close. In future, technological evolution may rejoin the main stream of biological
evolution, with humans breeding designs whose operational details lie far beyond their
comprehension.

References

Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in

other knowledge processes. Psychological Review, 67, 380-400.

Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.). (1994). From Animals to

Animats 3: Proceedings of the Third International Conference on Simulation of
Adaptive Behavior. Cambridge, MA: MIT Press.

Cliff, D., & Miller, G.F. (1996.) Co-evolution of pursuit and evasion II: Simulation

methods and results. In P. Maes et al. (Eds.), From animals to animats 4
(SAB96), pp. 608-617. Cambridge, MA: MIT Press.

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

Fogel, L.J., Owens, A.J., & Walsh, M.J. 1966. Artificial intelligence through simulated

evolution. New York: John Wiley.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addison-Wesley.

Grefenstette, J. J.(Ed.). (1985). Proceedings of an International Conference on Genetic

Algorithms and Their Applications. Hillsdale, NJ: Lawrence Erlbaum.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, Ann Arbor, MI:

University of Michigan Press. (MIT Press 2nd Ed.: 1992).

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1):44-50.

Husbands. P., Harvey, I., Cliff, D., & Miller, G. F. (1994). The use of genetic algorithms

for the development of sensorimotor control systems. In P. Gaussier & J. D.
Nicoud (Eds.), Proceedings of the International Workshop from Perception to
Action (PerAc94), pp. 100-121. Los Alamitos, CA: IEEE Computer Society Press.

Koza, J. R. (1992). Genetic programming: On programming computers by means of

natural selection. Cambridge, MA: MIT Press.

Lewontin, R.C. (1974). The genetic basis of evolutionary change. New York: Columbia

University Press.

Miller, G. F., & Todd, P. M. (1995). The role of mate choice in biocomputation: Sexual

selection as a process of search, optimization, and diversification. In W. Banzaf &
F. H. Eeckman (Eds.), Evolution and biocomputation: Computational models of
evolution. Lecture notes in computer science 899, pp. 169-204. Springer-Verlag.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural networks using

genetic algorithms. In J. D. Schaffer (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, pp. 379-384. Morgan Kaufmann.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog.

Schwefel, H. P. (1977). Numerische Optimierung von Computermodellen mittels der

Evolutionsstrategie. Basel: Birkhauser.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics,

25(4):319-328, July 1991

Todd, S., & Latham, W. (1992). Evolutionary art and computers. San Diego, CA:

Academic Press.

Todd, P.M., and Miller, G.F. (1997). Biodiversity through sexual selection. In C.G.
Langton and K. Shimohara (Eds.), Artificial Life V: Proceedings of the Fifth
International Workshop on the Synthesis and Simulation of Living Systems, pp.
289-299. MIT Press/Bradford Books.

