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Introduction  
 
Engineering and computer science are undergoing a Darwinian revolution. In the last ten 
years, computer scientists have hijacked the idea of “technological evolution”, 
transforming it from a metaphorical model of historical change into literal methods for 
doing evolutionary engineering using explicit processes of random variation and 
selective replication inside computers.  These methods, including genetic algorithms, 
genetic programming, and evolution strategies, have attracted exponentially increasing 
interest as powerful ways of finding good engineering solutions to hard, complex, real-
world problems.  
 
Surprisingly, these developments remain almost unknown to scholars interested in 
evolutionary models for technological progress and to evolutionary epistemologists 
interested in more general applications of Darwinian theory to human culture and 
knowledge. Conversely, computer scientists working on genetic algorithms or genetic 
programming know very little about studies of technological innovation that use explicitly 
evolutionary models.  This mutual ignorance is unfortunate, because there is so much 
each field can learn from the other.  Genetic algorithm research, for example, has 
developed powerful insights into the way that evolution works as a stochastic search 
method for exploring design spaces and finding good solutions, and these insights may 
hold even for technological evolution outside the computer.  On the other hand, studies 
of evolutionary processes in invention, market competition, and historical change reveal 
a rich, diverse, multi-level interplay between design and selection that may hold valuable 
lessons for attempts to automate this process. This chapter is a first attempt at match-
making between these two fertile fields.  
 
How computer science turned Darwinian  
 
When computers were slow, expensive, and unreliable, they were no good for simulating 
evolution.  But in the early 1960s, they became fast enough for evolutionary biologists 
(see Lewontin, 1974) to try solving some of the harder problems in theoretical population 
genetics using simulation rather than paper-and-pencil proof.  Typically, this meant 
simulating how the allele frequencies of just one or two genes might change over 
evolutionary time in response to various selection pressures.  
 
 Biologists made no attempt to use such evolutionary simulation to actually design 
something useful in the computer.   However, some researchers in the field of Artificial 
Intelligence realized that the same kinds of computer programs could be used as an 
engineering method rather than a tool for scientific simulation. In the mid-1960s, Fogel, 
Owens, and Walsh (1966) suggested that if real biological intelligence evolved through 



real evolution, perhaps simulated intelligence could evolve through simulated evolution - 
that is, by evolutionary programming.  
 
In the late 1960s and early 1970s, John Holland (1975) and his students at University of 
Michigan developed, a new type of computer program called a genetic algorithm. 
Populations of bit-strings - strings of zeros and ones - could be randomly generated to 
form an initial generation, and then each bit-string could be interpreted as a particular 
design according to some development scheme.  Designs could be tested according to a 
fitness function that determined how good they were for solving a particular problem. 
The bit-strings that made good designs get to have many copies - "offspring" - in the 
next generation, while those that make bad designs are eliminated. And so on.    
 
Holland (1975) proposed a general formalism for representing evolutionary processes, 
showing how they could be implemented inside a computer, and proving various 
theorems about how those processes will operate as search procedures for finding good 
solutions.  The most important “schema theorem” showed that if bit-strings can 
recombine their sub-strings (“schemata”) by a method analogous to biological 
"crossover", then selection on individual bit-strings is sufficient to increase the frequency 
of good schemata and drive out the bad.  This theorem suggested that genetic 
recombination rather than mutation generated the most important variations that 
selection acts on during evolution. Accordingly, Holland’s students made the study of 
recombination a major focus in genetic algorithms research.   
 
Meanwhile, in Germany, engineers such as Rechenberg (1973) and Schwefel (1977) 
were independently developing a type of Darwinian engineering called 
“evolutionsstrategie”.  For example, they constructed an aerofoil composed of many 
moveable sub-segments that could be adjusted and immediately tested in a wind tunnel.  
To optimize the aerodynamics of the evolving wing, they used a carefully controlled 
mutation and selection process to generate and test better wing shapes.  They then 
generalized this method into a stochastic optimization technique centered around 
continuous mutation and testing of a single design.    
 
None of these methods made much progress until computers became much faster and 
cheaper in the 1980s.  The problem in all evolutionary simulation using ordinary 
sequential computers is that the time it takes to produce a single “run” of evolution 
equals the time required to test each individual design, multiplied by the number of 
designs in the population, multiplied by the number of generations that the population 
evolves.  With population sizes around 100 to 1000, and around 100 to 1000 
generations per run, a typical genetic algorithm run requires somewhere between 10,000 
and one million evaluations to produce a decent result.  For a complex problem, testing 
each solution using 1970s computer technology might take several minutes, so that an 
entire evolutionary run  would require about a year of computer time.  
 
Genetic algorithms became viable as research and engineering tools only when 
computers became fast enough for each fitness evaluation to take only a few seconds.  
Also, the development of massively parallel computers (such as the revolutionary CM-2 
Connection Machine, with over 64,000 processors) cuts out one of the loops, because 
an entire population can be evaluated at once, with each processor testing a different 
individual.   Once it became possible in the 1980s for risk-averse computer science 
graduate students to complete hundreds of simulation runs during their Ph.D. program, 
the field of evolutionary computation flourished.  



 
In 1985 was the first of a successful biannual series of International Conferences on 
Genetic Algorithms (see Grefenstette, 1985). The first genetic algorithm textbook 
appeared in the late 1980s (Goldberg, 1989) just in time for this author to take one of the 
first graduate courses on the subject at Stanford University. This course was given by 
one of Holland’s students, John Koza, who shortly afterwards published a magnum opus 
(Koza, 1992), detailing how a modification of the genetic algorithm concept could be 
used to evolve Lisp programs to solve various computational tasks.  Instead of 
representing designs using bit-strings, genetic programming applied selection and 
recombination directly to the Lisp programs, which can be represented as tree-like 
structures.  
 
Since 1992, when the key journal, Evolutionary Computation, was founded, the whole 
field has taken off academically. The half dozen main journals complement the 
proceedings of nearly 30 periodic conferences, grouped in a number of regular series.   
The field has also produced three main textbooks (Goldberg 1989; Davis 1991; Mitchell 
1996), which are used in the more than 30 graduate courses on evolutionary 
computation currently taught around the world.  
 
In addition to research on genetic algorithm theory, research has flourished on real-world 
applications in a number of fields, including industrial design such as aerospace, 
automobiles, robotics, civil engineering, and factory layout, control systems engineering 
such as job shop scheduling, neural network design, and system identification, 
pharmaceutical engineering such as molecular design and protein folding, and financial 
optimization in spreadsheet programs. Several corporations have recently begun 
marketing genetic algorithm software packages for corporate and personal use, or 
consulting about genetic algorithm applications.  
 
How genetic algorithms work  
 
Classic genetic algorithms (e.g. Holland, 1975, 1992; Goldberg, 1989) have five key 
components: a genotype format that specifies how genetic information is represented in 
a data structure; a development scheme that maps that information into a phenotypic 
design; a fitness function that assigns a fitness value to each phenotype; a set of   
genetic operators that modify and replicate the genotypes from one generation to the 
next; and a set of evolutionary parameters such as population size and mutation rate 
that govern how evolution runs.  
 
The genotype format specifies the type of data structure that will represent the genetic 
information. In place of the 4-letter nucleotide alphabet of DNA, genetic algorithms 
mostly use binary "bit-strings". Typically, these have a fixed length (e.g. 1000 bits), 
interpreted as a fixed number of "genes" (e.g. 100 genes) each composed of a fixed, 
equal number of bits (e.g. 10 bits per gene).  In the last few years, however, researchers 
have explored a wider variety of genotype formats, including strings of real numbers, 
branching tree structures, matrices, directed graphs, and so forth.  The initial generation 
of genotypes is usually produced randomly, for example by assigning a zero or one with 
equal probability at each point in a bit-string.  
 
The development scheme maps a genotype into a phenotype according to some 
algorithm or recipe. Thus each gene might be interpreted as a binary number specifying 
some parameter of a possible engineering solution.  For example, 20 genes might be 



sufficient to specify (or “parameterise”) a design for a jet engine turbine blade, which 
could then be selected for its aerodynamic efficiency in a simulation. Alternatively, 
successive segments of a bit-string might be interpreted as successive rows in a matrix 
specifying possible connections between the processing units in a neural network (Miller, 
Todd, & Hegde, 1989). In more recent work on evolving dynamic neural networks 
capable of controlling robots that pursue or evade one another, we used a much more 
complex development scheme where some genes specify the spatial locations of 
neurons in a 2-D “brain”, whilst other genes specify their interconnections11.  
 
The trick in genetic algorithms is to find schemes that do this mapping from a binary bit-
string to an engineering design efficiently and elegantly, rather than by brute-force.  
Good development schemes map from small genotypes into complex, promising 
phenotypes that already obey fundamental design constraints.  Bad schemes require 
large genotypes and usually produce phenotypic monstrosities.   Of course, the smaller 
the genotype a development scheme can use to specify a set of phenotypes to be 
searched, the faster evolution can proceed.  
 
The fitness function maps from phenotypes into real numbers that specify their "fitness", 
and hence the probable number of copies the underlying genotype will be awarded in 
the next generation.  The fitness function is the heart of the genetic algorithm: it is at 
once the  environment to which all designs must adapt, and the grim reaper (or 
“selective pressure”)  that eliminates poorly adapted designs.  As with development 
schemes, fitness functions can range from the trivial to the astoundingly complex.  Early 
exploratory research on genetic algorithms often used literal mathematical functions, 
such as y = x² - cos x , to map from a real-number phenotype (x) into a fitness score (y). 
For real applications, however, fitness functions are usually computer simulations of how 
a phenotype design would perform at some task. In our research on evolving pursuit and 
evasion strategies (Cliff & Miller, 1996), for example, each neural network pursuer was 
tested in about a dozen simulated chases around a virtual arena and awarded fitness 
points for catching different randomly selected opponents as fast as possible.  In a civil 
engineering application, a fitness function might assign points to bridge designs based 
on their structural integrity, estimated cost, traffic capacity, and resistance to wind-
induced oscillations.  
 
If the fitness function does not realistically reflect the real-world constraints and demands 
that the phenotypic designs will face, the genetic algorithm may deliver a good solution 
to the wrong problem.  But if each fitness evaluation takes too long, a genetic algorithm 
that relies on millions of evaluations to make evolutionary progress will not be practical.  
Most difficult in practice is the “multi-objective optimization” problem: giving just the right 
weight to each design criterion in the fitness function so the evolved designs reflect 
intelligent trade-offs rather than degenerate maximization of one criterion over all others.  
For example, giving too much weight to the traffic capacity criterion in a bridge-
evaluation program might result in 1000-lane bridges with no structural integrity and 
exorbitant cost.  
 
In effect, the fitness function must embody not only the engineer’s conscious goals, but 
also her common sense.  This common sense is largely intuitive and unconscious, so is 
hard to formalize into an explicit fitness function.  Since genetic algorithm solutions are 
only as good as the fitness functions used to evolve them, careful development of 
appropriate fitness functions embodying all relevant design constraints, trade-offs, and 
criteria is a key step in evolutionary engineering.  



 
The genetic operators copy and modify the genotypes from one generation to the next.  
Classic genetic algorithms used just three operators: fitness-proportionate reproduction  
- genotypes are copied in proportion to the fitness scores that their phenotypes received; 
point mutation - each bit in a bit-string is flipped from a 1 to a 0 or vice-versa, with some 
very low probability per generation; and crossover - "offspring" are formed by swapping 
random genotype segments between two randomly matched "parents".  Mutation and 
crossover thus generate "blind variation", and fitness-proportionate reproduction 
provides "selective retention" (see Campbell, 1960).   
 
Much genetic algorithm research has focused on making these basic genetic operators 
work well together, and trying new, quasi-biological genetic operators such as "gene 
inversion", "duplication", "deletion", and "translocation".  Getting the right balance 
between mutation and selection is especially important.  If selection pressures are too 
strong relative to mutation, genetic algorithms suffer from "premature convergence" on 
to a genotype that was better than any other in the initial, random generation, but which 
is far from optimal.  
 
The typical evolutionary problem of getting stuck on a "local fitness peak" can be 
especially acute with genetic algorithms, where crossover between nearly identical 
parents does not introduce significant genetic variation, and the vast majority of 
mutations tend to make even suboptimal designs worse, so get "selected out" almost 
immediately. Significant genetic diversity can be preserved by speading the population 
across a simulated geographic area, allowing sub-populations to evolve different 
solutions and then exchanging innovations via migration and crossover (Cliff & Miller, 
1996).   Alternatively, if "assortative mating" is favoured, so crossover is programmed to 
occur more frequently between similar "parents", then the population tends to split apart 
into divergent  "sub-species" with different adaptations (Todd & Miller, 1997).  
 
Finally, the evolutionary parameters determine the general context for evolution and the 
quantitative details of how the genetic operators work.  Classic genetic algorithm 
parameters include the population size (usually between 30 and 1000 individuals), the 
number of generations for the evolution to run (usually 100 to 10,000 generations), the 
mutation rate (usually set to yield around one mutation per genome per generation), the 
crossover rate (usually set around 0.6, so three-fifths of genotypes are recombined, and 
two-fifths are replicated intact), and the method of “fitness scaling” (e.g. how differences 
in fitness scores map onto differences in offspring number).  
 
Deciding the best values for these parameters in a given application remains a black art, 
driven more by blind intuition and communal tradition than by sound engineering 
principles.  For example, there is a trade-off between population size and generation 
number: the larger your population, the fewer generations you can run for a given 
amount of computer time.  The genetic algorithm community has no consensus yet 
about how best to allocate these computer cycles.  
 
Some strengths and weaknesses of genetic algorithms  
 
Conjointly, the five components outlined above determine a "design space" (chap ?).  
Genetic algorithms search these spaces using a massively parallel, stochastic, 
incremental strategy called "evolution".  They are not an engineering panacea.  Their 
performance is only as good as their ability to search a particular design space efficiently 



and inventively.  This in turn depends critically on a host of subtle interactions between 
genotype formats, development schemes, genetic operators, fitness functions, and 
evolutionary parameters. Genetic mutations should tend to produce slight but detectable 
alterations in phenotypic structure that open the way for cumulative improvement.  
Genetic crossover should tend to swap functionally integrated parts of phenotypes to 
yield new emergent properties and behaviors. And so on.  
 
For very simple problems, one can be a bit sloppy about bringing all five components 
into alignment, because genetic algorithms are rather robust search methods for small 
design spaces.  But for hard problems and very large design spaces, designing a good 
genetic algorithm is very, very difficult.  All the expertise that human engineers would 
use in confronting a design problem -- their knowledge base, engineering principles, 
analysis tools, invention heuristics, and common sense -- must be built into the genetic 
algorithm.   Just as there is no general-purpose engineer, there is no general-purpose 
genetic algorithm.  
 
Most obviously, there is no general-purpose development scheme because different 
applications require completely incommensurate types of designs.  As we saw in chapter 
X, the design spaces of possible bridges, neural networks, proteins, factory layouts, jet 
turbines, computer circuits, and corporation financial strategies cannot be translated into 
a common language, and even if they could be, searching that generic design space 
would be vastly less efficient that searching a more focused subset.  
 
Genetic algorithms tend to work best when the design space they are searching has 
already been rather well-characterized or, ideally, fully formalized into a kind of design 
grammar.  For example, genetic programming (Koza, 1992) seems to work well because 
the design space of computer programs in a particular programming language is clearly 
structured by that language’s formal grammar.  Genetic programmers favour languages 
like Lisp because the "S-expressions" that constitute Lisp programs are branching tree 
structures that remain interpretable when their end-nodes or sub-trees are mutated or 
crossed over.  
 
 By contrast, there is no design grammar yet for fully re-useable ground-to-orbit 
spacecraft -- indeed, there remain wildly disparate strategies for solving this difficult 
problem, each of which require some components that go beyond current technology.   
In such a case, using a genetic algorithm to generate promising new design solutions 
would be vastly more difficult than in genetic programming.  Still, it might be useful, 
because by forcing engineers to think about characterizing the design space as a whole 
rather than perfecting one particular solution,  the discipline of setting up the genetic 
algorithm may yield new insights and ideas.  
 
One of the most disturbing features of genetic algorithms is that they often produce 
solutions that work, but one cannot quite understand how or why they work.  Whereas 
traditional engineers are constrained to working on designs that they more or less 
understand, genetic algorithms select only for performance, not for clarity, modularity, or 
comprehensibility.  Like insect nervous systems that have been under intense selection 
for millions of generations to get the most adaptive behavior out of the smallest, fastest 
circuits, artificial neural networks evolved for particular tasks (see Miller, Todd, & Hegde, 
1989; Husbands, Harvey, Cliff, & Miller, 1994) almost never do so in a way that makes 
any sense to human minds that expect modular decomposition of function.  
 



Is this a problem?  It depends more on the social, cultural, and legal context of 
engineering in particular domains. The patent office may be sceptical of a design 
delivered by a genetic algorithm if you cannot explain why it works. A client corporation 
may reject an optimal marketing strategy designed by a management consultancy using 
a genetic algorithm if you cannot explain why this strategy makes sense. The 
automaticity of the genetic algorithm and the opacity of its solutions may create 
problems of accountability,  liability, safety, and public confidence.  Also, well-understood 
solutions can be easily modified and generalized to other problems and other contexts, 
whereas specifically evolved solutions may not.  
 
On the other hand, animal and plant breeders have been content for thousands of years 
to use artificially selected products without knowing exactly how they work.  Likewise, 
many traditional technologies such as Japanese sword-making (see Martin, this volume) 
evolve by trial and error experimentation and cultural imitation, without any theoretical 
understanding of why the production techniques work.  Computer scientist Danny Hillis 
has commented that he would rather fly on an airplane with an autopilot evolved through 
a genetic algorithm than one with a human-engineered autopilot.  The reason: the 
evolved autopilot’s very existence was at stake every time it confronted the simulated 
emergencies used to test it and breed it, whereas the human designer’s existence was 
never at stake.  For better or worse, genetic algorithms break the link between 
innovation and analysis that has been considered a fundamental principle of modern 
engineering.  
 
Fitness evaluation in Darwinian engineering  
 
As I noted earlier, the crucial practical issue for real "Darwinian engineering" is whether 
the process of evaluating candidate designs can be automated. Fitness evaluation is the 
computational bottleneck in simulated evolution. For example, in our project on pursuit 
and evasion, it took 95-99% of the computer time (Cliff & Miller, 1996).  Applying the 
genetic operators to breed one generation from the previous generation is usually 
computationally trivial by comparison. This is because physical reality has a lot of detail 
that needs simulating, and most serious applications require evaluation in many tests 
under many different conditions.  Consider the computational requirements for 
evaluating the aerodynamic efficiency and stability of a single jet fighter in simulation 
under a reasonable sample of different altitudes, speeds, weather conditions, and 
combat scenarios.  Now multiply by the million or so evaluations needed to evolve a 
decent jet fighter design.  Serious Darwinian engineering seems to require prohibitive 
amounts of computer power.  
 
Is there any alternative to doing all fitness evaluation in simulation?  Engineers didn’t 
always test things in computers.  Technological progress used to depend on visualizing 
or sketching design solutions, mentally imaging how they would fare in various tests, and 
hand-building prototypes for testing in the real world.  Before the 20th century, much of 
engineering and architecture also depended on building scale models and testing them 
in various experiments.  Prototyping and model-making are very efficient ways to let the 
physics of the real world do much of the evaluation work for you.   But how could this 
sort of real-world testing be incorporated into an automated fitness evaluation method for 
Darwinian engineering?  
 
A possible future strategy for Darwinian engineering is suggested by a project at the 
University of Sussex (Husbands, Harvey, Cliff, & Miller, 1994) to use genetic algorithms 



to evolve computer vision systems for guiding mobile robots.  To evaluate how well each 
vision system would work, they originally had the robots moving around in a virtual 
environment, using very time-consuming computer graphic ray-tracing methods to 
determine what visual input the robot would get at each position in its little world. They 
decided to let the real world take care of the ray-tracing for them, and put a video 
camera on to a gantry that could move around in a tabletop model of the test 
environment.  Each robot vision system to be tested was downloaded to a small 
computer that could translate the robot's simulated movements into gantry movements, 
with the digital video input then being used directly as the input to the simulated robot 
vision system.  Apart from graduate students needing to untangle the video input cable 
once in a while, this hybrid between simulated evolution and real-world testing could 
automatically evaluate a few dozen robot vision systems per day, and led within a few 
weeks to the evolution of a system capable of navigating towards triangles in preference 
to circles.    
 
Carried to its logical extreme, this strategy interfaces with combinatorial chemistry, 
where innumerable variant molecular entities are synthesized automatically by the 
random combination of segments drawn from different populations, and then screened 
automatically for the part they play in a particular chemical or biological process. 
Effective new catalysts, enzymes, therapeutic drugs, electronic materials, etc. can thus 
be discovered and systematically improved by an evolutionary process that is closely 
akin to a genetic algorithm.  
 
New methods of computer-controlled manufacturing, robotic assembly, rapid 
prototyping, and automated lab testing may allow candidate designs to be incarnated 
and evaluated without human intervention.   Automating certain aspects of research and 
development in this way will be much more challenging than automating the 
manufacture of standardized products, because candidate designs are worth evaluating 
only if they are unique.  Modifying factories to do automated prototyping, testing, and 
fitness evaluation will be a major challenge for Darwinian engineering.  
 
Another alternative is to put human judgment into the evaluation loop.  Interactive 
artificial selection can be used to guide evolutionary search through a design space. 
Thus, computer graphics artists (e.g. Sims, 1991; Todd & Latham, 1992) have applied 
human aesthetic judgement to evolve fantastic images based on compact "genotypes" 
combining mathematical formulae and computer-graphic primitives, with the advantage 
that favoured "phenotypes" can be easily copied and recreated without having to store 
an entire multi-megabyte image.  
 
Darwinian engineering could extend this sort of artificial selection in two main ways.  
First, human engineers could use their common sense and expertise to rate candidate 
designs for their overall plausibility as they are generated by a genetic algorithm on the 
computer screen in front of them, with computer simulation to test design details. 
Moreover, the computer could keep track of the human responses to candidate designs, 
learning how to make its own ratings - for example by training a neural network to 
emulate human judgment. The outcome might then be an automated evaluation function 
that combined common sense assessments with sound engineering principles.  
 
A more revolutionary way to put humans in the evaluation loop is to use consumer 
judgments directly to evolve customized products through interactive, online Darwinian 
engineering.  Modern businesses usually try to make money by second-guessing 



average consumer taste, manufacturing a limited range of products to span that taste, 
and trying to attract mass sales.  Genetic algorithms with interactive evaluation may 
permit a radically different strategy that integrates design, manufacturing, marketing, and 
sales in a single system.   
 
Suppose individual consumers could log on to a company’s "interactive catalogue" 
directly. Each product line would be a genetic algorithm for evolving a customized 
product design. It would start with an initial population of candidate designs that could be 
rated by the consumer, and then mutated and recombined to yield successive 
generations of new, improved designs.  Allow each consumer to evolve their preferred 
designs, subject only to certain safety, functional, and legal requirements, and which are 
capable of being manufactured profitably by the automated production system.  A few 
minutes of interactive evolution should lead to a most-preferred design, needing only to 
be priced and debited to a credit card number before being manufactured and shipped to 
the consumer. Up-to-data consumer-preference data could be fed into the interactive 
catalog so as to bias the interactive evolution for each consumer towards areas of 
design space that have recently proven popular with other consumers with the same 
demographics and tastes.  
 
This sort of interactive evolutionary consumerism would be most appropriate for fairly 
low-tech, easily modularized products such as wallpaper, textiles, clothes, jewelry, 
furniture, toys, holiday packages, and standard financial services.  Yet even for relatively 
high-tech, complex products that must function safely and reliably, like automobiles, 
cardiac pacemakers, nuclear-powered aircraft carriers, and automated stock-trading 
systems, where companies normally market only a few carefully-optimized, thoroughly-
tested designs, interactive evolution might allow consumers to explore the design space 
around these designs and observe the fitness trade-offs and constraints for themselves.  
 
In any case, by bringing consumers directly into the design loop as agents of interactive 
evolutionary selection, the diversity, originality, and richness of human material culture 
might be substantially increased.   One benefit is that it would introduce an analogue of 
sexual selection.  Consumers select products for more than their functional fitness; they 
also impose various aesthetic and symbolic criteria. These two modes of selection 
produce quite different evolutionary dynamics and can powerfully complement each 
other as search and optimization processes (Miller & Todd, 1995).  For example, 
selection for apparently maladaptive "sexual" traits is a very efficient way for populations 
to escape from local optima in which purely functional selection would otherwise leave 
them trapped.  By allowing consumers to bring their apparently frivolous aesthetic 
judgments to bear on product development, they may stumble upon promising new 
areas of design space that more utility-minded engineers may have overlooked.   
 
The future of technological evolution  
 
Most historians, psychologists, and engineers who have studied technological evolution 
in the past agree that the evolutionary process has always been "automated" to some 
extent, both in the unconscious mental processes of inventors searching design spaces 
for innovative solutions (see chapter X, Carlson, Perkins), and in the competitive market 
processes the sift good product designs from bad (Nelson, Stankiewicz, Vincenti). The 
rise of genetic algorithms as engineering methods adds a third, more explicit, type of 
automation: the evolution of designs inside computers.  Clearly, the utility of genetic 
algorithms will depend heavily on their ability to complement these other two types of 



highly efficient, massively parallel search processes – human creativity and economic 
markets.  
 
There are good reasons for expecting this complementarity to prosper.  Minds and 
markets are excellent at combining vast amounts of diverse, distributed information 
under multiple constraints into workable solutions (e.g. ideas that solve the problem or 
prices that clear the market).  Genetic algorithms do something similar, combining vast 
amounts of information about the fitnesses of different design components (i.e. genes 
and their phenotypic effects in the simulation) into good designs that are at least locally 
optimal.     
 
But genetic algorithms work by principles rather different from human creativity and 
market competition.   Human minds are not as good as computer simulations at detailed, 
quantitatively accurate fitness evaluation.  And markets are not nearly as fast, or as free 
from social, cultural, political, and legal biases.  There is a niche then, between minds 
and markets, for genetic algorithms to contribute to technological evolution.   This will 
probably lead to a division of labour in technological evolution, where problem-solving is 
often automated using genetic algorithms, but problem-framing still depends on 
individual and group creativity, and solution-verification still depends on market 
processes and social history.   Engineers will have to think more like selective breeders 
who design fitness functions, set population parameters, and oversee evolution inside 
computers and automated design-testing facilities.  
 
Such a development sounds strange, but would simply mark a return to the earliest, 
most important technological revolution in human history: the domestication and 
selective breeding of animals by Neolithic pastoralists, followed by the domestication 
and selective breeding of plants by farmers around five thousand years ago. The early 
pastoralists and farmers did not know how pre-existing biosystems - wolves, wild cattle, 
seed-headed grasses, etc. - worked or where they came from; they simply substituted 
their own selection pressures for those of nature, and reaped the benefits.  As the 
complexity of manufactured technologies begins to approach that of natural biosystems, 
we may be forced to revert to this humbler form of engineering qua selective breeding.  
This exceptional millennium, in which humans were able to comprehend their own 
technologies sufficiently to design them through engineering principles, may be drawing 
to a close. In future, technological evolution may rejoin the main stream of biological 
evolution, with humans breeding designs whose operational details lie far beyond their 
comprehension.  
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