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How Motion Reveals Intention
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Do not go where the path may lead, go instead where there
is no path and leave a trail.
Ralph Waldo Emerson

I¢ you should encounter a mountain lion while hiking in the Sierra Ne-
vada mountains of California, there are two things you must not do, ac-
cording to the Mountain Lion Foundation: turn your back on the animal
or run away. Either of these behaviors would trigger the lion’s predatory
chase behavior, transforming you from startled hiker into potential prey.
It is possible to avoid becoming prey by denying the lion’s perceptual
system the cues that normally accompany being a mealtime animal.
Knowing how other creatures categorize behavior based on motion cues
could thus make the difference between life and death.

Humans are also very adept at making such behavioral judgments from
simple motion patterns: When two children run across a field, their par-
ents can distinguish in a brief moment whether they are playing or fight-
ing in earnest. When a pigeon twirls and struts before another, who ig-
nores this display and turns away, we can quickly tell that the first is
trying unsuccessfully to court the second. In situations such as these, we
as outside observers can often decide what is going on—who is doing
what to whom—based just on the motions of the two organisms relative
to each other. Moreover, the human or animal participants in such cases
can also tell what kind of interaction they are having, again using motion
cues. How can organisms categorize behaviors based solely on observed
motion patterns? In other words, how can humans and other animals
translate frem the domain of pure physical movement into the domain of
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animate intentions and desires such as chasing, playing, and courting?
What are the most important categories of behavior? What motion cues
are most useful for distinguishing them, and how do we exploit these cues
to achieve fast, accurate recognition of other agents’ intentions?

The answers to these questions come in three stages. First, we must
specify the major behavioral functions that an organism’s whole-body mo-
tions can fulfill, such as chasing, fighting, or courting. Second, we must
determine the observable motion cues that allow us to categorize which
of these functions an organism is performing at a particular time. And
third, we must find the cognitive algorithms that can be used to make this
functional categorization based on motion cues.

These stages require very different research methods. The first stage
entails an evolutionary task analysis of motion itself, asking what basic
reasons animals have for moving at all, given the demands of survival
and reproduction. The second stage requires analyzing the information
structure of the environment, determining what useful motion cues can
be recovered by observing a moving animal, and which motion cues are
most useful in distinguishing the animal’s reasons or intentions for move-
ment. The third stage includes comparing the performance of different
possible decision algorithms that map motion cues onto the basic func-
tional categories of animal movement, to narrow the search for algorithms
that animals and humans might actually use. Because many algorithms
attain similar levels of accuracy when inferring intention from motion (see
chapter 7 for more on this problem of algorithm comparison), we will
not aim to be conclusive on this point. Rather, our main concern will be
determining the functionally important motion categories and the avail-
able motion cues that can be used to distinguish between them.

It is not at all obvious how to get from motions to intentions. The diffi-
culties are clear in comparing the standard dictionary definitions for mo-
tion terms with those for higher-level intentional behaviors. For example,
the Oxford English Dictionary defines “run” as “to move the legs quickly
(the one foot being lifted before the other is set down) so as to go at a
faster pace than walking”; whereas it defines “chase” as “to pursue with
a view to catching.” Thus, “run” is defined by reference to observable
motion cues, whereas “chase” is defined by unobservable intent with re-
spect to a future goal concerning an unstated object. Nothing in the defini-
tion of “chase” suggests how a naive observer could distinguish chasing
from any other intentional category of movement. Because we cannot di-
rectly perceive movement intentions and goals, and the targets of move-
ment may even be hidden, we must infer them all indirectly using motion
cues that can be directly perceived—a clear case of inference under uncer-
tainty as described in chapter 1.

A general description of how we can infer goals and intentions from
observable behavior would constitute a rather complete understanding of
the human “theory of mind” (Baron-Cohen, 1995) and much of social psy-
chology more generally. We are not attempting to provide that general un-
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derstanding here—we focus only on the very simple case of using motion
cues to categorize the most typical forms of intention-driven interaction
between two agents, This special case is, nonetheless, biologically impor-
tant to virtually every animal species, and psychologically important as
the most elementary level of social cognition. Animal species differ in
body structure, modes of locomotion, environmental constraints on mo-
tion, motion perception abilities, mating systems, and positions in the lo-
cal food chain. However, by keeping our analysis of the special case of
intention from motion sufficiently abstract, we hope to identify motion
cues and intention categorization strategies that are general enough to
apply to many species despite these differences. $

We must still constrain the special case explored here by limiting the
types of intentional motion categories, cues, and cue-processing algo-
rithms we will consider. First, we assume that humans and other animals
have domain-specific motion perception and intention inference adapta-
tions that are attuned to ancestrally typical categories of motion patterns
and intentions. These typical patterns, associated with intentions such as
pursuit, evasion, fighting, courtship, and play, arise because there are just
a few basic survival and reproductive goals for animate motion. The fact
that there are only a few reasons why one animal moves relative to an-
other animal makes our job as psychologists much easier, transforming an
unconstrained inference task (“Why is that animal moving?”) into a sim-
ple categorization decision (“Is that animal chasing, fleeing, fighting, court-
ing, or what?”).

Second, we limit our consideration of the vast range of possible infor-
mation that could be used in judging the intentions of other agents. Poten-
tial cues include not only the motion of whole bodies in relation to other
bodies—as when mountain lions infer edibility when humans turn from
them—but also motions of one body part in relation to another, including
threat and submission postures, facial expressions (e.g., snarling dogs or
laughing children; see Darwin, 1872/1965) and those micromovements of
throat, tongue, and lips that result in articulate human speech. Here we
focus on just the first, simplest form of information for judging intentions:
the overall motion trajectories of two whole organisms in relation to each
other. Third, the inference algorithms that might use this motion informa-
tion are also limitless, but again we are interested in simple possibilities:
fast and frugal heuristics that use as little of the available information
as they can to make their decisions and operate as quickly as possible.
Particularly when judging the intentions of (possibly hostile) others, it is
important to be able to make decisions quickly and with just the informa-
tion at hand, rather than waiting until all possible evidence has been gath-
ered and the mountain lion has pounced.

We begin this chapter with an evolutionary analysis of how animate
intentions could be inferred from motion cues. We then develop a novel
experimental method for studying how humans make these inferences.
The first step is to gather ecologically representative examples of the six
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most typical animate motion patterns, by having participants play interac-
tive computer games that require them to pursue, evade, fight, court, be
courted, or play with each other. The participants control on-screen bugs
with realistic motion physics using a mouse. The resulting motion pat-
terns are recorded and presented to another set of participants, who try to
infer what the bugs are trying to do to each other. We determine which
intentions are confused most frequently with which other intentions. We
then construct and test various models of how people could categorize
these intentions given some simple motions cues that can be computed
directly from the motion patterns. The goal is to identify both useful ob-
jective motion cues and simple heuristics that can process them to infer
animate intentions. We view this intention-inference task as the founda-
tion for more advanced forms of social cognition and attribution. "

Previous Research on Inferring Intentions

from Motion Cues

The question of how we infer intentions from motion cues seems funda-
mental for motion perception and social cognition, but it has rarely caught
the attention of mainstream psychologists. The few exceptions are those
who take an ecological view of perception, which motivates more direct
study of the structure of the observable environment in relation to an
agent’s goals.

The earliest example was perhaps Fritz Heider, who set out to study
the perception of social events by studying the particular stimuli that led
to different attributions. His experiments in the 1940s with Simmel
(Heider & Simmel, 1944) demonstrated that people spontaneously attri-
bute intentions and personalities even to featureless geometric figures
such as dots and triangles, if these figures move around in a cartoon film
according to patterns reminiscent of animals courting and fighting. Heider
and Simmel did not explicitly identify the motion cues that provoke these
interpretations. But they had enough tacit knowledge of these cues that
they could lead observers to view a roving triangle as a scheming villain,
or a flitting disc as a fickle adulteress, through nothing more than relative
motion in a simple environment.

Interest in this area fell dormant for a quarter of a century, aside from
research in ethology specifically aimed at uncovering the motion cues that
animals make to signal their intentions to each other, such as wolf pups
bowing to signal playful intent (see Fagen, 1981). In the 1970s, J. J. Gib-
son’s (1966, 1979) research on “direct” perception of ecologically impor-
tant visual cues of motion inspired a number of studies on the perception
of gait and other forms of biological motion by Kozlowski and Cutting
(1977; Cutting & Kozlowski, 1977). These studies were aimed at identify-
ing various dynamic and structural invariants in “point-light displays,”
filma nf nennle walkine and actine in total darkness. with onlv small light
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sources affixed to their limbs and bodies. Even such impoverished stim-
uli, consisting solely of cues to movement, contained enough information
to allow the visual system to make sophisticated inferences (e.g., that is a
man lifting a heavy object, or that is a woman walking).

1In a separate research tradition, French psychologist Albert Michotte
investigated how people perceive cause and effect based on motion cues
(Michotte, 1963). His project addressed mainly the psychology of causal-
ity (inspired by the philosophy of Aristotle and Hume), but Michotte was
intrigued by his finding that people tend to interpret rectangles that inter-
act without colliding as if they were animals or humans (Michotte, 1950),
similar to Heider and Simmel’s findings of rampant anthropomorphism.
His work influenced modern studies on the innate preparedness of infants
to perceive animacy (Premack, 1990; Spelke et al., 1995), and on the per-
ception of animate motion more generally (Freyd & Miller, 1992; Gelman
et al., 1995; McBeath et al., 1992). Michotte's emphasis on causation has
been followed by recent studies that focus more on how people distin-
guish animate from inanimate motion, rather than how people distinguish
between different types of animate motion.

This preoccupation with the animate-inanimate distinction is unfortu-
nate because it stops short of what is arguably the more interesting ques-
tion: Recognizing a moving object as animate is only the first step toward
recognizing its intentions, which are what really matter for deciding what
to do in response to it. Zebra herds have to live with lions hanging around
at their watering holes, fleeing only when the lions show a real intention
to chase them. The crucial distinction for a zebra is not between animate
motion (a moving lion) and inanimate motion (a breeze stirring tawny
grasses), but between animate motion that is relevant (a hungry lion at
full sprint heading straight for you) and irrelevant (a fat lion chasing a
fertile lioness). The point of animate motion perception is to guide one’s
own animate motion. The animate-inanimate distinction is just one rela-
tively weak cue for deciding what to do; much stronger, more informative
cues are available and so should be used to help determine other agents’
intentions and one’s own reactions. With that view, this chapter examines
some basic goals of animate motion, some associated motion cues that
may be general across species and ecologies, and some simple heuristics
for categorizing intentions based on those motion cues.

The Basic Goals of Animate Motion

Moving has energetic costs, so animals are expected to move only when

the fitness benefits of movement exceed these costs. The major fitness
benefits of moving, as of any other behavior, are survival and reproduc-
tion. Thus, it is possible to deduce a few paradigmatic goals of animate
motion from the fundamentals of natural selection and sexual selection.
Animals evolve to interact adantivelv with varions “fitness affardan-
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ces” in their environments—things that are likely to affect the replication
of their genes (Miller & Freyd, 1993; Todd & Wilson, 1993). Positive fit-
ness affordances, such as food and sexual mates, promote survival or re-
production. Negative fitness affordances, such as predators, pathogens,
parasites, and sexual competitors, interfere with survival or reproduction.
Animals evolve sensory-motor systems to approach the positives and
avoid the negatives. If two animals offer the potential of mutually positive
yields, mutual approach usually results (e.g., in symbiotic relationships).
If they threaten mutually negative yields, then mutual avoidance results.
Movement patterns in these cases are just solutions to various positive-
sum coordination games. The more interesting case is when animals pres-
ent affordances of opposite sign to each other, that is, when one animal
wants to be near the other, but the other wants to be far away. The zebra
is a positive (food) affordance for the lion, but the lion is a very negative
(death) affordance indeed for the zebra. Such conflicts of interest lead to
more complex interactions, transforming simple approach into relentless
pursuit, and simple avoidance into desperate evasion (Miller & Cliff,
1994).

From these arguments, it follows that the fundamental categories of
two-agent animate interaction are mutual approach (boring), mutual
avoidance (also boring), and pursuit and evasion (interesting). In the sur-
vival domain, pursuit and evasion usually occur between predators and
prey, or between fighting conspecifics. In the reproductive domain, males
usually pursue and females usually evade, at least for a while (Andersson,
1994; Darwin, 1871). Thus, almost every animal will need to master some
subset of five basic categories of animate motion: pursuing, evading, fight-
ing, courting, and being courted. To these categories we also add a sixth,
play, which is widely used, especially by mammals, to learn mastery of
the other five movement types. Although not all species need to exhibit
the full set of these behaviors, they generally need to be able to recognize
each of them. We will now consider the six behavior types in turn.

Pursuit Animals move toward objects they desire. If the desired object is
inanimate, we have a degenerate case of goal-directed behavior. But if the
object is animate and does not want to be exploited as a fitness affordance
(e.g., as food or as a mate), then it will move away (evade). The simplest
pursuit strategy is to point one’s front in the direction of the desired object
and charge at top speed toward it, changing one’s direction if the object
deviates to the left or right of one’s current heading. However, pursuit can
be more efficient by predictively taking into account any environmental
constraints on motion (obstacles and boundaries) and the pursued agent’s
own heading, movement, and intentions.

Evasion Animals move away from things that threaten them. Again, if
the threatening object is inanimate, we have a degenerate case of obstacle
avnidance. nr ane-sten “evasion.” If the threat is animate, however, and
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does not wish to be evaded, then it will pursue, and sustained evasion
becomes necessary. Evasion often favors strategies of deceptive feints and
lunges and unpredictable, “protean” zigzagging (Driver & Humphries,
1988; Miller & Cliff, 1994), as well as avoidance of environmental traps or
cul-de-sacs. ;

Fighting Animals of the same species often fight over fitness affordances
such as territories, resources, sexual mates, and social status. Fights can
be tricky to decipher because both animals must combine pursuit and eva-
sion, attack and defense, in a way that intimidates or overcomes the oppo-
nent, without injuring or killing themselves. Because animal bodies are
heterogeneous, with some parts specialized for attack and other parts vul-
nerable to injury, fighting usually includes a great deal of precise, dy-
namic body positioning in relation to one’s opponent.

Courting Animals (usually males) move toward members of the opposite
sex (usually females) with whom they wish to mate (Andersson, 1994;
Darwin, 1871). But because selective mate choice is almost always im-
posed by the opposite sex (usually females), simple approach is almost
never enough. Instead, mate-seeking animals often evolve extremely com-
plex courtship behaviors with special features designed to display their
health, strength, size, status, intelligence, or creativity (Andersson, 1994;
Miller, 1998). These displays are usually produced close enough for the
desired mate to perceive them, but not too close, lest the audience is
scared off rather than enticed. After some display time, ranging from sec-
onds (for some insects) to years (for some humans), if the desired mate
signals her (or his) interest, the final approach and copulation can occur.

Being Courted Animals sought after as mates (usually females) have
strong incentives to select among their suitors quite carefully, because
they usually have more at stake when mating than the suitors, and the
genetic quality of the suitors they choose to mate with will determine half
of the genetic quality of their offspring. Random mating is stupid mating
(see chapter 13 for more on nonrandom mating and mate search). The task
when being courted, then, is to express enough interest to elicit informa-
tive courtship behavior from various suitors so their mate quality can be
assessed, but not so much interest that the courter skips courtship alto-
gether and tries to move straight to copulation. Thus, being courted re-
quires a delicate balance between interactive encouragement and coy reti-
cence. Courted animals usually maintain enough proximity to their
suitors that they can determine the suitor’s quality, but do not get close
enough to risk sexual harassment or rape.

Playing Play often comprises a variety of actions through which'young
animals can practice all of the above movement types, using play signs to
indicate that thev are pursuing, evading, courting, or fighting without real
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lethal or sexual intent (Fagen, 1981). In basic play, animals repeatedly
switch roles between pursuer and evader, or attacker and defender. In
more complex play characteristic of large-brained primates, animals
may interact in more abstract ways with imaginary partners or mutual
mimicry.

These six goals for animate motion are not intended to be the building
blocks in some sort of universal movement grammar. There are other
movement goals that cannot be reduced to these categories, such as paren-
tal protection of vulnerable offspring from conspecifics or predators, for-
aging for inanimate food items or nest materials, migrating to new habi-
tats, grooming oneself or others, flocking, mobbing predators, and so forth.
We simply start with the most obvious basic cases of two-agent interac-
tion. Future research will, we hope, analyze the motion cues that help
distinguish these additional categories of behavior.

Eliciting Motion Trajectories for the Six Typical Behaviors

Following in the tradition of early work on attribution of intentional be-
havior to simple moving stimuli by Heider and Simmel (1944), we sought
to study how people categorize the functional intentions of two interact-
ing organisms based solely on their trajectories through space relative to
each other. This required collecting some trajectories representative of
each of our six functional categories that could be measured objectively
to find useful motion cues, and that could be presented in a standard
format as stimuli to human participants. But such trajectory data is rather
difficult to come by. The literature in both biology and psychology offers
many studies of long-range animal navigation, migration, and commuting
on the one hand, and small-scale limb movements on the other. However,
there is little publicly available data on behavioral trajectories between
these extremes. So we decided to generate our own sample trajectories,
using the animate agents we had in ready abundance: university students.

The question was how to obtain ecologically representative samples of
the six typical behavioral categories. Despite generous research resources,
it proved infeasible to attach radio tracking beacons to participants’ heads,
record them from satellite observations, and wait for some good examples
of pursuit, fighting, courtship, and play. Though overhead video record-
ings from the Oktoberfest near our Munich laboratory would have cap-
tured instances of all of these behaviors, the trajectories would have ap-
peared somewhat distorted by the potent Weissbier.

Instead, we had pairs of participants interact through a computer net-
work, generating the trajectories by instructing them to play various move-
ment games. Each participant sat before a computer and used a mouse to
control the motions of a simple buglike creature displayed on the com-
puter screen. Participants could see their own bug and another bug, which
was controlled by another participant in another room at another com-
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puter. Both bugs are displayed on-screen in a featureless rectangular envi-
ronment bounded by walls, without any obstacles, viewed from an over-
head perspective (see figure 12-1). We engaged 10 pairs of participants to
perform the six fundamental behaviors in this simple computer-mediated
interaction game.

The bug did not act like an ordinary on-screen cursor that directly re-
flects hand movements across the mouse pad. Rather, the bug was con-
strained by some simulated physics. This included momentum, which
produced slow acceleration and deceleration of the bugs; collision dy-
namics, which made the two bugs bounce off each other and the walls;
and a top speed at which the bugs could travel. The participants’ mouse
movements were essentially treated as targets for where the bug should
be heading next (for details, see Blythe et al., 1996). These semirealistic
physics made the movement games challenging, enhanced the perception
of animacy, and, we hope, made the resulting motion trajectories more
ecologically representative of natural animal movement.

The bug form was chosen because it looked more interesting than a
dot. As discussed earlier, previous experiments on motion perception sug- -
gested that the attribution of animacy to a moving object appears to be a
natural tendency for humans, whether the object resembles a human form

Figure 12-1: The two-bug view that each participant saw when generating

motion trajectories, captured at a single instant in time. Each bug is a
different cnlar.
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or a geometric shape (as found by Heider & Simmel, 1944; Michotte, 1963;
Rimé et al., 1985). However, we thought the bug form would stimulate
participants’ interest without biasing their behavior in anthropomorphic
ways, as a human-shaped icon might. It was also important to use a figure
with a clear front and back end (as opposed to a circle, for instance) so
that orientation would be unambiguous to both parties involved in the
motion games. Furthermore, as biologist J. B. S. Haldane is reputed to
have observed, “to a first approximation, all animals are beetles.” ?

During each experiment, two participants unknown to each other were
put into separate rooms with computers and were guided by on-screen
instructions to practice and play the appropriate movement games in se-
quence. The participants were initially given a two-minute practice pe-
riod to learn how to control their bugs using the mouse. Pilot studies
showed this practice period sufficient for attaining a reasonable skill
level, given that most participants had substantial experience with com-
puter mouse controls. Following this, they participated in six trials of two
minutes each." The asymmetric trials of pursuit-evasion and courting-
courted were duplicated with roles reversed, while fighting and play were
only performed once by each participant pair.

The two participants, here A and B, were instructed to play the six
movement games as follows:

1. A pursues B: Participant A was instructed to move his or her
bug to intercept the other player’s bug as quickly and as often
as possible. Participant B was instructed to try to avoid being
intercepted at all times.

2. B pursues A: This situation simply reversed the roles of pursuer
and evader between participants A and B.

3. A courts B: Participant A was instructed to move his or her bug
so as to court the other bug, by interacting with it in any way
that it might find interesting, exciting, or enticing. Participant B
was instructed to play the role of being courted, moving his or
her bug to show interest or disinterest, and to elicit further dis-
plays in any way desired.

4. B courts A: This situation reversed the roles of courter and
courtee.

5. Fighting: Both participants were instructed to attack the other
bug from behind, while at the same time avoiding being attacked.
Specifically, they were instructed to try to strike the other bug’s
rear end with their bug’s front end, at the same time avoiding the
attacks of the other bug trying to do the same to them. This type
of fighting resembles World War I aerial combat (bring one’s front
guns to bear on the enemy without his guns pointing at you)
rather than boxing or wrestling.

1. The courtship trials lasted three minutes as it is a slower, more gradual be-
havior that required more time with some participants. In real life, while fights and
pursuits may be over in seconds, we expect courtship to take rather longer.
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6. Playing: Both participants were instructed to play with the other
bug in whatever manner they wanted.

These movement games were obviously underspecified: We gave no
feedback, offered no monetary incentives for performance, and allowed
almost no practice time. We were not interested in studying the long-term
equilibrium strategies for these dynamic two-person games, but rather in
using the games as a quick and easy way of generating ecologically repre-
sentative motion trajectories for six typical kinds of animate interaction.
We expected that participants would have relatively stable and readily
applied notions about what movement in each category looks like, and
this is the knowledge we wanted to elicit. For pursuit, evasion, and fight-
ing it would have been possible to specify each participant’s payoffs ex-
actly, but for courting, being courted, and playing, such payoff specifica-
tion would have been difficult.

Visualizing the Resulting Trajectories

L
In each motion category trial, the computer recorded the movement trajec-
tory of each participant’s bug at a high temporal and spatial resolution.
We then analyzed the resulting fine-grained trajectories in various ways,

to see if there were any motion cues that could distinguish one behavioral .

category from another. First, we used a simple visualization method to
look at the trajectories of two bugs interacting during one two-minute mo-
tion trial. Figures 12-2 to 12-5 show space-time plots of typical pursuit-
evasion, courtship, fighting, and play trajectories generated by pairs of
participants. The horizontal plane of the plot represents the horizontal
and vertical positions of the creatures in the two-dimensional environ-
ment, while the vertical axis represents time during one 90-second trial
segment. These plots reveal some basic information about the trajectories.
Higher velocities (more spatial distance covered per unit time) result in
flatter trajectories. Bugs that are not moving result in vertical line seg-
ments in these plots. Smaller distances between the bugs result in tightly
intermingled trajectories.

Several features are immediately apparent in the plots that result from
different movement games. In pursuit and evasion (figure 12-2), one sees
very flat (very high speed) movements extending over a great area of the
environment, contrasting sharply with the slower, more restricted move-
ments during courtship (figure 12-3). Both pursuit-evasion (figure 12-2)
and fighting (figure 12-4) show high speeds combined with large amounts
of turning and looping. Fighting (figure 12-4) is distinguished by a smaller
average distance between the two bugs, and by more tightly intertwined
looping, with frequent contacts between the bugs (where their trajectories
meet). In courtship (figure 12-3), the courter moves much more than the
often stationary courtee, sometimes circling, and occasionally engaging
the courtee in little bursts of pursuit and evasion. Only a few body con-



Pursuit/Evasion

Evader
Pursuer - - - -

i (—;Vf”;»;}}fg;" """""""

-

70+

60

40+

Time (Seconds)

1000

X

Figure 12-2: A sample trajectory generated when one participant’s bug
pursued the other, which evaded. Here, 90 seconds of interaction is repre-
sented, with time proceeding upward on the z-axis, and on-screen posi-
tion of each bug plotted in the x-y plane. Note the generally high speed
(flat segments) and large area covered.
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Figure 12-3: A sample trajectory generated when one participant’s bug
courted the other, which responded to the overtures. Note the more elabo-
rate motions of the courter, and occasional rapid fleeing of the courtee.
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Figure 12-5: A sample trajectory generated when the two participants’

bugs played with each other. Here, one bug looped while the other
dashed.

Figure 12-4: A sample trajectory generated when the two participants’
bugs fought, trying to hit each other from behind. Note the high speed and
high degree of looping.
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tacts occur in courtship. Play (figure 12-5) looks like a combination of
pursuit, evasion, fighting, and courtship, combining looping, rapid dashes,
and long still pauses. We will use these observations later to suggest some
motion cues for distinguishing among these behavioral categories.

How Do People Categorize the Trajectories?

Our goal is to find motion cues that can distinguish exemplars of the six
behavior categories and that may be used by humans in making such cate-
gorizations. But before we analyze the motion trajectories we have col-
lected for different intentional categories, we must be sure that these tra-
jectories do in fact contain the cues necessary to make the proper
categorical distinctions. To find out, we tested whether a new set of parti-
cipants could categorize the motion patterns accurately, Given example
trajectories, how good are untrained people at assigning them to the be-
havioral task for which they were originally generated? Knowing this pro-
vides a rough check on the ecological validity of the trajectories, and
makes it possible to investigate which categories are easily confused and
which are easily distinguished. A model of animate motion categorization
might perform well, but unless it makes roughly the same pattern of judg-
ments, both correct and incorrect, as real human participants, it would
not qualify as a good psychological model. Also, we can see what happens
when we present the trajectories of both bugs together, versus only one by
itself (see next section), to check the relative importance of single-bug
motion cues versus interactive, relational cues for trajectory categoriza-
tion. That is, by systematically removing some motion cues and recording
drops in categorization performance, we can see which cues matter.

The Two-Bug Case: Relational and Individual Cues

In this categorization experiment, 10 participants saw portions of 30 mo-
tion trajectories recorded from the first experiment presented in random-
ized order, with one bug displayed in blue and the other in red. Partici-
pants were instructed to decide which one of the six behaviors the red
bug was engaged in, as quickly as possible. As soon as they felt they could
decide whether the red bug was pursuing, evading, fighting, courting, be-
ing courted, or playing with the blue bug, participants were to stop the
trajectory playback and make a choice. To clarify this six-alternative
forced choice, these trajectory-categorizing participants were shown the
instructions given to the original trajectory-generating participants, How-
ever, these participants were not shown any examples of the motion cate-
gories beforehand, nor given any feedback on their selections. Nonethe-
less, participants’ categorization performance changed little if at all over
the course of the 30 trials, with equal accuracy in the first and second
halves of the trials. suggesting that there was no significant learning effect.

HOW MOTION REVEALS INTENTION: CATEGORIZING SOCIAL INTERACTION 273

Table 12-1: Participants’ Categorization Confusion Matrix for Two-Bug
Trajectories

Choice
Actual Pursuing Evading Courting Courted Fighting Playing
Pursuing 29 1 1 0 9 17
Evading 5 20 0 5 6 7
Courting 2 0 38 2 4 8
Courted 0 2 5 29 4 6
Fighting 5 6 3 3 10 23
Playing 2 0 9 10 7 21
Totals 43 29 56 49 40 82

Note. Each entry shows how many times participants chose a particular (column) category for
a trajectory generated in some actual (row) category. The main diagonal (in bold) shows correct
categorizations.

(Response times were also recorded for each judgment for later compari-
son among different categorization models, but we will not discuss these
data in this chapter.)

Overall, participants selected the originally intended motion category
in nearly half (49%) of the trials. This is well above chance (about 17%)
for six-alternative choice. (In comparison, three expert participants who
were familiar with the task and had previously seen many trajectories—
the three authors—achieved 72% matches.) To see where participants
erred, we can construct confusion matrices showing which categories
were most often confused with each other. Table 12-1 shows such a confu-
sion matrix for the 300 participant categorizations. The rows denote the
actual intention-category instruction given to the trajectory generators,
and the columns denote the choice decisions made by the trajectory cate-
gorizers. Thus, the leading diagonal represents correct responses. With
10 participants each making 30 categorizations distributed across the six
categories, each row contains about 50 responses.’

The column totals in table 12-1 (which would equal the row totals if
participants matched all of the trajectory categorizations) show that parti-
cipants overestimated the base rate of play by nearly 70%, and underesti-
mated the amount of evasion by about 30%. (Participants also overesti-
mated courtship and underestimated pursuit and fighting by smaller
amounts.) These tendencies could reflect participants’ underlying beliefs
about the base rates of these motions in nature, particularly that play is
more common than serious conflict, especially evasion. The play overesti-

2. Most rows in tables 12-1 and 12-2 do not have exactly 50 entries due to
missing data and to the way in which randomly assigned trials were split between
the pursuing-evading and courting-courted pairs.
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mation could also indicate that participants use play as a default “catch-
all” choice when no clear distinction can be made, in keeping with the
argument mentioned earlier that play provides training for the other be-
haviors.

Reading across rows in the table, we also see some more specific
sources of confusion. Pursuit was very often miscategorized as play, and
fighting was miscategorized as play more often than it was accurately cat-
egorized as fighting. Fighting was often mistaken for pursuit and evasion,
as well. In addition to the general tendency to mistake other behaviors as
play, actual play was often mistaken for other behaviors such as courting,
being courted, and fighting. This error can arise when participants first
see a chasing component of play, for instance, and make a quick (wrong)
decision of pursuit-evasion from this limited time window. In nature,
other nontrajectory cues (such as laughing in humans) could be used to
categorize play more accurately.

On the other hand, participants did often get the categorizations right:
Pursuit and evasion were rarely confused with each other, and courting was
rarely confused with being courted. As might be expected, pursuit and be-
ing courted were never mistaken for each other, and courting and evading
were never mistaken for each other. This is consistent with the existence of
similarities between pursuit and courting, and between evasion and being
courted. However, important differences are clearly present as well, because
pursuit was almost never perceived as courtship, courtship was almost
never perceived as pursuit, and being courted was rarely mistaken for eva-
sion. These differences and similarities should be reflected in the set of
cues we ultimately settle on for categorizing motion trajectories.

While our data showed a high percentage of systematic errors (overesti-
mating play, underestimating evasion) and many individual confusions, it
must be emphasized that even with no feedback, no practice, and minimal
instruction, naive participants can categorize behaviors into biologically
important classes at far above chance levels, given nothing more than the
recorded trajectories of two agents interacting. We have stripped away all
environmental context, all gait and posture information about the agents,
all facial expression, and all communication. Nevertheless, pure whole-
body motion cues are sufficient to categorize the behaviors fairly accu-
rately, from which we conclude that the trajectories we collected do in
fact contain enough information to indicate intentional categories. We can
therefore proceed to analyze just how that information is reflected in the
trajectories: What are the cues we can use to judge intention from motion?

The One-Bug Case: Trajectories Without Relational Cues

One way to determine what sort of cues people (in particular, our partici-
pants) use to judge intention from motion is to eliminate part of the avail-
able information from the motion trajectories and see how this affects the
categorization iudgments made on the basis of the modified traiectories. In
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the first categorization experiment, participants saw all of the information
captured in the complete trajectories of both interacting bugs. This made
it possible for participants to use all of the motion cues that rely on the
relative position, heading, and speed of the two creatures. To gauge the
importance of this class of relational cues, we wanted to find out how
well people could do at the categorization task if they were all stripped
away. Such relative information can be removed by only playing back the
recorded trajectory of one of the two bugs, so that participants cannot
know what the other bug is doing.

To this end, we ran a second categorization experiment in the same
manner as the first, but with 10 new participants, and with only one of the
two bugs in an interacting pair being visible in each presented trajectory.
Participants had to categorize what behavior the one visible bug was per-
forming. Table 12-2 shows the confusion matrix from this experiment,
presented in the same format as table 12-1. Now, overall percentage cor-
rect drops from the 49% level of the two-bug experiment to 30% (still
well above the chance level of 17%). This large performance drop indi-
cates that we should include relative motion information in our list of
important cues in this domain. We can also learn something interesting
from considering the patterns of errors made in this setting.

Inspecting the column totals in table 12-2 reveals that participants in
this experiment selected all six categories more evenly; the play overesti-
mation has disappeared, replaced by a slight tendency to overestimate the
amount of courting going on. Most of the miscategorizations were due to
strong confusions between certain behavior classes. Whereas pursuit was
clearly distinct from evasion or courting if the second bug was visible
(table 12-1), one-bug pursuit was very often confused with the latter two
categories. Evasion was mistaken for pursuit as often as it was accurately
categorized, perhaps because both entail high-speed, unpredictable loop-

Table 12-2: Participants’ Categorization Confusion Matrix for One-Bug
Trajectories

Choice
Actual Pursuing Evading Courting Courted Fighting Playing
Pursuing 15 8 12 3 7 7
Evading 13 14 8 1 5 6
Courting 2 5 16 17 5 9
Courted 5 7 4 21 2 5
Fighting 7 4 12 0 13 14
Playing 5 4 10 5 14 10
Totals 47 42 63 47 46 51

Note. Each entry shows how many times participants chose a particular (column) category for
a trajectory generated in some actual (row) category, after seeing the motions of only one of the
two bues involved. The main diagonal (in bold) shows correct categorizations.
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ing throughout the entire space. Courting was very often mistaken for be-
ing courted, but, strangely, being courted was still rarely mistaken for
courting. Fighting was mistaken for courting and for play nearly as often
as it was categorized accurately.

The differences between tables 12-1 and 12-2 indicate that relational
cues are important in making some distinctions but not others. In particu-
lar, single-bug (nonrelational) information is usually sufficient to distin-
guish aggressive intentions (pursuit, evasion, fighting) from more passive
intentions such as being courted. But relational cues seem to be necessary
to decide whether the bug is the follower (pursuit or courtship) or the
avoider (evasion or being courted). These two findings indicate that a dif-
ferent set (and number) of cues is needed to make different categoriza-
tions—in some cases, decisions can be made without using all of the
available information. Our search for appropriate categorization algo-
rithms later in this chapter will make use of this fact.

Identifying Useful Motion Cues Computable from
Trajectory Information

The categorization experiments just described showed that, to categorize
intentions from the motion trajectories of two interacting agents, we must
consider both individually based cues computed from the motion of a
single agent, and relational cues determined by comparing the motions of
both agents together. To narrow in on the specific cues that could be used,
we must consider the information embedded in the trajectories.

Some obvious cues might relate to the goals of the behavioral catego-
ries. For example, in our experiments the goal of pursuit was to intercept
the other agent, and the goal of fighting was to strike the other agent's rear
end with one’s front end. Thus, one could just try to count up the number
of successful interceptions and strikes to distinguish pursuit and fighting
from play. However, the other agent does not want to be intercepted or
struck. Successful evasion implies unsuccessful pursuit. Cues of success
may be poor indicators of intention, particularly over short-term portions
of an ongoing interaction, and in fact, such cues did not prove to be very
diagnostic in our setting.

It is more useful to consider the simple, objective (nonintentional) cues
that can be computed given an intentional motion trajectory. The trajector-
ies recorded in our experiment took place in two spatial dimensions, so
we can focus on some simple Newtonian cues. A trajectory can be mea-
sured in terms of the bug’s position and velocity for each of the two linear
dimensions. Because the bug figures have a head end and a tail end, they
also have a rotational degree of freedom, captured in their orientation or
heading, and a rotational velocity equivalent to the rate at which they
are changing their orientation. Ignoring higher-order parameters such as
acceleration, this yields six basic motion parameters for each agent: hori-
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zontal position, horizontal velocity, vertical position, vertical velocity, ori-
entation, and rotational velocity. A two-agent system can thus be de-
scribed with 12 independent parameters.

This might be fine for a physicist interested in modeling abst[:act
changes in position in a two-body system, but is it useful for categorizing
behaviors and intentions of animate agents? Intuition, and the results of
our categorization experiments presented in the previous sections, suggest
not. Information about one’s absolute place in the world and that of some
other organism does not matter to individuals nearly as much as compari-
son between oneself and others—social behavior, like evolution itself, is
driven by relative differences. Absolute position information is largely ir-
relevant in perceiving how two agents are interacting (aside from the ef-
fects of special locations in the environment such as watering holes or
shelter); what matters is their position relative to each other. Likewise,
their individual orientations are not as informative regarding their inten-
tions toward each other as are their relative orientations toward each
other. From any one agent’s perspective, the three position and orientation
parameters that matter are likely to be the distance to the other agent
(what we refer to as the relative distance cue), the angle between one’s
current heading and the other agent’s location (relative angle), and the
angle between one’s current heading and the other agent’s own heading.
(relative heading).

We can also reduce the six velocity parameters that describe a generalk
two-agent system into four velocity parameters that matter to any given
agent whose behavior we want to categorize: absolute velocity [.how. fast
the agent is going forward, rather than in the two orthogonal spatial direc-
tions separately—as we will see, we can ignore the other velocity compo;
nent corresponding to sideways motion), relative velocity (how fast the
one agent is going relative to the other agent), absolute vorticity (how fast
the agent is changing heading), and relative vorticity (how fast the one
agent is changing heading relative to the other agent’s heading change).
We can eliminate two parameters by ignoring one’s own sideways velocity
(which is usually zero in nature and in our bug world), and relative side-
ways velocity (which is also usually zero). Thus, we are left with three
relevant position parameters and four relevant velocity parameters. These
can be converted into motion cues by averaging them over some temporal
window. In accordance with the results of our second categorization ex-
periment, which demonstrated the importance of relational information,
five of the seven cues we have ended up with are relational (uncomput-
able given just one visible agent). :

In summary, we propose seven simple, ecologically relevant cues that
can be useful in categorizing the intentions of one (focal) agent interacting
with another agent.

Relative distance: the distance between the two agents. Fighting and
pursuit-evasion tend to produce smaller relative distances in the bug tra-
jectories than do courtship and play.
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Relative angle: the angle between the focal agent’s current heading (the
direction it is facing) and the other agent. This cue indicates whether the
other agent is in front of or behind the focal agent. Pursuit can be distin-
guished from evasion most easily by relative angle.

Relative heading: the difference in heading between one agent and the
other, indicating whether they are facing the same direction (more typical
of pursuit and evasion), or facing each other (more typical of fighting,
courtship, and play).

Absolute velocity: the forward velocity of the focal agent with respect
to the background environment. Pursuit-evasion and fighting generate
higher absolute velocities than do courtship and play.

Relative velocity: the difference between the velocities of the two
agents. Pursuers and evaders tend to have nearly zero relative velocity
across the duration of a chase, but courtship produces large differences in
velocity between courter and courtee.

Absolute vorticity: the vorticity (change in heading) of the agent with
respect to the background environment. Fighting and courting produce high
vorticities, while play and being courted are associated with low vorticity.

Relative vorticity: the difference between the vorticities of the two
agents. Pursuers and evaders tend to turn equally often; and so have zero
relative vorticity, while courters and courtees often have a large vorticity
difference.

Before settling on this set of seven cues distilled from the motion tra-
jectories, we need to be sure that they contain at least enough information
to make reasonably accurate intention categorizations. If we discover oth-
erwise, then we would have to search for a different set of more appro-
priate cues. One way to test this question is to see whether a general-
purpose pattern-associating algorithm can map from the particular values
of these seven cues computed from portions of motion trajectories to the
correct categories for those trajectories. We trained a simple logistic-acti-
vation three-layer neural network on the same 300 examples of motion
trajectories that participants saw in our categorization experiments de-
scribed earlier, using the values of the seven cues as inputs and the proper
category as the target output. After training, the neural network correctly
categorized 247 out of the 300 examples, or 82%. (When tested for gener-
alization ability on 300 different examples, the network still got 200 cor-
rect, or 67%—see table 12-3.) Recall that participants only correctly cate-
gorized 49% of the 300 examples. Based on this, we concluded that these
seven cues, while perhaps not fully capturing all of the distinguishing
trajectory information, still distil] enough information to allow us to cre-
ate reasonable models of human performance in this task.

Solitary animals that only encounter a single other conspecific individ-
ual at any one time need only be able to categorize the behavior of those
others relative to themselves, that is, from an egocentric viewpoint. For
animals in more social species, where interactions between others are
commonly witnessed, it can also be important to keep track of the inten-
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Table 12-3: Categorization Accuracy of Participants and .Competing
Algorithms for One- and Two-Bug Trajectories, Along With Number
of Cues Used by Each

Competitor
Dawes’s Franklin’s Neural
Criterion Participants CBE  Rule Rule  Network
% correct on training
set with 7 cues 49% 65% 62% 68% 82%
% matches to partici-
pants’ correct — 73% 72% 77% 90%
: Average number of
cues used ? 3.6 7 7 7
% correct on testing
set with 2 cues 30% 34% 33% 34% 26%
% correct on testing |
set with 7 cues - 57% 60% 60% 67%

Note. Here, accuracy is shown in percentage correct (out of 300 trials), excep.t fu.r the second
row, which shows percentage of matches to participants’ (147) correct categorizations.

tions of different group members relative to each other. This is particu-
larly true in species with dominance hierarchies and kin networks. Fur-
thermore, between-species interactions often need to be judged accurately.
For example, a gazelle should be able to tell if a lioness is chasing one of
its herd mates, or if she is being chased herself, perhaps by another lion.
Each of the seven cues listed above should be readily computable from
either an egocentric viewpoint or from a third-party observer positior.L.
Although our experiments presented trajectories from a rather ecologi-
cally implausible (but computationally simple) top-down view, the seven
cues could be computed almost as easily from a more realistic ground-
level view.

The seven cues just described, like the 12 Newtonian parameters, are
mostly independent in principle, but rather highly correlated in practice.
That is, the structure of motion trajectories produced by organisms in na- -
ture will ensure that certain cue values co-occur. These natural intercorre-
lations between motion cues have two implications for categorizing inten-

» tions. First, only a few cues may suffice for making an accurate decision,
because there is high overlap in information content between cues. Sec-
ond, if one cue is unavailable, another may take its place: Correlated cues
enable vicarious functioning (essentially, cue substitutability) in decision
making (Brunswik, 1943). e

Vicarious functioning is important because in many real-world situa-
tions some or most of the possible cues may not be perceivable at arly
given time. Furthermore, the speed with which a cue can be registered
may be another crucial constraint on the decision-making process. For
high-pressure problems, such as deciding whether a mountain lion is stalk-
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ing you, it may not suffice to wait for all cues to become available before
making a decision. Such time pressure may favor fast and frugal, noncom-
pensatory decision heuristics that make the most efficient use of the mo-
tion information available (see chapter 7). These are the sorts of decision

heuristics for categorizing behaviors from motion cues that we will now
consider.

Decision Heuristics for Categorizing Behaviors

What sort of decision mechanism might people and other animals use
to process motion cues into intention category judgments? As we have
indicated, judging intention from motion is a critical task often performed
under time pressure. Moreover, our categorization experiments indicated
that different cues are useful for deciding on different categories. These
observations led us to look for a simple fast and frugal decision mecha-
nism that uses only as much of the information as is necessary to select a
single category. The Categorization by Elimination (CBE) algorithm is just
such a mechanism (see chapter 11 for a full introduction). CBE categorizes
a given stimulus by starting with a full set of possible categories and then
using the particular values of the cues for that stimulus to eliminate more
and more categories until only a single possibility remains. Thus, different
stimuli may require that more or fewer cues are processed before they
can be categorized. This algorithm always checks the cues in a particular
predetermined order, and only uses as few cues as it can get away with to
reach category decision, rendering it fast and frugal. Yet its categorization
accuracy on some standard test sets is still close to that of more traditional
algorithms that combine all available cues (as shown in chapter 11).

To use CBE to categorize motion intentions, we first determined the
order in which to use our seven cues, based on how well they can each
distinguish among the six intentional categories in our training set of 300
trajectory examples. We found that the absolute velocity cue was the most
accurate at categorizing these trajectories when used alone, so it was put
first in the list, followed by relative angle, relative velocity, relative head-
ing, relative vorticity, absolute vorticity, and relative distance. (We found
that the exact cue ordering did not make much difference in overall cate-
gorization performance; however, it does have a large effect on the number
of cues looked up by the algorithm.) Then, to categorize a particular trajec-
tory, CBE starts with the full set of six possible intentional categories and
considers the value of the absolute velocity cue for that trajectory to deter-
mine which categories to eliminate from the set of remaining possibilities,
For instance, a relatively low velocity value of only 400 pixels per second
indicates that the trajectory could correspond to the more leisurely catego-
ries of courting, being courted, or play, so that the other three more fre-
netic categories should be eliminated from the set of possibilities. Because
more than one category remains after checking velocity, the next cue in
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the preordered list (relative angle) must be used to elirninalte m?re catego-
ries. This process of checking further cues continues until a single cate-
gory is left, which is the algorithm’s final decision. .

Categorization by Elimination has several interesting fea%ures as an al-
gorithm for cue-based categorization. It is nonintegrative, using only those
cues necessary to reach a decision. If each cue takes some time to assess,
this makes CBE faster than algorithms that use all cues. It is also noncom-
pensatory, with earlier cues eliminating category possibilities that can
never be restored by later cues. Whether this is a reasonable feature de-
pends on the type and number of errors CBE produces, and the conse-
quences of those errors. For example, if CBE eliminatgs the category
“fight” too readily, and stupidly mistakes fighting for playing, CBE would
be maladaptive. Finally, CBE always uses cues in a particular orlder. Here
we order the cues by their ability to make correct categorizations (cue
success—see chapter 11). It is important to use cues in a good order, be-
cause this is what allows CBE to make a rapid decision. If the algorithm
looked at cues starting with the least useful, for instance, it would take
more cues (and hence more time) to reach a decision and would more
often be incorrect. :

We tested the performance of CBE on categorizing trajectory i.r.ltentlons
using the seven motion cues against both the correct (originally intended)
categories and the categories that participants actually chose [from. table
12-1). These comparisons are shown in table 12-3. To see ho?\r this faslt
and frugal heuristic performs in comparison with more tradit.mnal deci-
sion-making methods, we also constructed two linear combination models
(Dawes’s rule, using unit weights, and Franklin’s rule, using cue success
as weights—see chapter 4), which process the cues in the usPal integra-
tive, compensatory fashion. As mentioned in the previous section, we also
trained a three-layer neural network model on this task to see how a non-
lihear, compensatory system would do.

The first row of table 12-3 shows the performance of the above four
algorithms on 300 categorizations, along with participant performance on
the same data set. (The cue values in each of the 300 trials were computed
from the same time period of trajectory data that the participants saw in .
that particular trial, ensuring that no extra advantage was given to the
algorithms over the participants.) Each of the algorithms.uutperformed the
participants by a fair margin. But this is not surprising given that the algo-
rithms were all trained with feedback on the data to make the proper cate-
gorizations, while participants were not given feedback and had to' catego-
rize each motion pattern the first time they saw it. What is more
surprising, though, is that the fast and frugal CBE performs about as well
as the more traditional linear information-integrating methods (see chap-
ter 11 for more such surprises). Furthermore, CBE uses only half of tl.'xe
cues, on average, that the other algorithms do—and thus it achieves its
good categorization performance with significantly less data.

How well do CBE and the other algorithms match the decisions made
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by our participants? For all trials that participants got right (147), we com-
pare how many times each algorithm also chose the (same) correct cate-
gory and show this as a percentage of the 147 trials in row 2 of table
12-3, (The different algorithms’ matches to participant mistakes appeared
largely random and uninformative—there are more ways to be wrong than
to be right in this task—and so are not included here.) Here again CBE
does as well as the other linear-integrative algorithms, matching nearly
three-quarters of the participants’ correct answers. Given that CBE is also
faster and more frugal than the other two linear models, we have some
reason for preferring it as a psychological model worthy of further investi-
gation. (In comparison, the baseline neural network algorithm matched
90% of the participants’ correct responses.)

But just how much more frugal is CBE in this task? In the thm:l row of
table 12-3, we show how many cues the different algorithms used to make
each categorization, averaged across the 300 trajectories seen. For the lin-
ear models and the neural network, this average is rather straightforward:
These algorithms always use all of the available cues, so their average cue
use is 7. But CBE can use a different number of cues to categorize each
trajectory, and in general uses as few as possible. On average, CBE uses
only 3.6 cues per categorization, little more than half of the total number
of cues available.

The benefits of CBE’s minimal cue usage are indicated in the fourth
row of table 12-3, where we have strictly limited the number of cues that
participants or algorithms can use to make categorizations. Specifically,
we showed participants only one of the interacting bugs in the trajectory
(this is the data from the second categorization experiment reported ear-
lier), and we allowed the algorithms to use only the two nonrelational
cues that are computable from such a restricted single-bug trajectory (ab-
solute velocity and absolute vorticity). CBE and the two linear algorithms
again do at least as well as the human participants. But the powerful neu-
ral network model, which did so well on the full training set, is now rela-
tively crippled by the lack of information it was expecting—it is the only
decision model that makes fewer correct categorizations than the partici-
pants do. In the last row of table 12-3 we see further evidence about the
ability of these models to adapt to situations with new information: Here
we show their performance in generalizing to a different set of 300 trajec-
tories. All lose a fair amount of categorization accuracy, with the neural
network losing the most and the linear algorithms the least; CBE lies in
the middle.

These results can help us put the superior performance of the neural
network model on the full-cue categorization task in perspective. Cer-
tainly the greater number of free parameters in the neural network weights
can help its fitting performance. Beyond this, perhaps nonlinear cue inte-
gration has an advantage in this domain, and perhaps compensatory cue
use is more appropriate here as well, when all the cues are known. How-
ever. compensatorv cue use requires simultaneous access to all relevant
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cues, and there may be situations where cues are naturally perceived at
different times or in different orders. In such cases, standard neural net-
work models may be at a relative disadvantage compared with fast and
frugal competitors. CBE, by contrast, could use cues in the natural order
in which they can be perceived, categorizing as far as possible given each
piece of incoming information. For example, relative position information
may often be easier to estimate than average velocity or vorticity informa-
tion, and so could be used to make an initial estimate of the appropriate
intentional category in a fast and frugal manner. These questions should
be explored by creating on-line dynamic decision models that can appro-
priately categorize animate intentions under ecologically realistic time
constraints.

In sum, the fast and frugal CBE heuristic performs about as accurately
as more traditional linear cue-integrating mechanisms as a model of hu-
man categorization'in the intention-from-motion domain.’ It achieves this
surprising performance despite using on average only half of the informa-
tion that the other algorithms use. This frugality allows CBE to make faster
decisions, especially in realistic situations where time is required to as-
sess the value of each cue. Using fewer cues can also lend CBE added
robustness in comparison to the plethora of parameters in the competing

=

neural network model—several cues could be unobservable in the envi-

ronment without affecting CBE’s performance at all. These advantages
may not make much of a difference in a laboratory setting, but they can
be crucial in real-world life-and-death decisions. This leads us to propose
CBE as an ecologically rational algorithm for determining an organism’s
intention from its motion alone.

A Motion Turing Test and Other Extensions

As an adjunct to our categorization work, we devised a pilot version of a
motion-based Turing test, in which a robot bug replaces one of the human
participants in the trajectory-categorization experiments described earlier.
After the trial, we asked the lone human participants whether they
thought they were interacting with another human-controlled bug, or with
a computer-controlled bug. A pilot study suggested that even the simplest
robot algorithms could be surprisingly convincing, especially when their
actions respond to the human-controlled bug (as opposed to acting com-
pletely independently). That is, if one bug (e.g., a pursuer) is really con-
trolled by a human and the other (e.g., an evader) is controlled by a simple

3. As is often the case, it is difficult to make an empirical distinction between
the fast and frugal algorithm and other approaches based solely on comparisons to
human choices. See chapter 7 for more on this difficulty, and for some approaches
to distinguishing between algorithms using process data such as reaction times in
addition to choice data.



284 SOCIAL INTELLIGENCE

computer program, the resulting motion pattern looks almost indistinguish-
able from that of two human-controlled bugs interacting. This simple test
further indicates the power of limited motion cues to indicate animate in-
tention. We can similarly test other proposed cues of intention from motion
by building behaviors that generate those cues into new robot bugs and in-
vestigating which combinations are most convincing to human observers.

These sorts of animate motion experiments may provide some useful
new methods for investigating human theory of mind—the attribution of
intentions, beliefs, and desires to others based on observable behaviors.
Some researchers suggest that autistic people have deficits in their theory
of mind module, such that their attributions of intention are severely im-
paired (Baron-Cohen, 1995). If so, it would be interesting to see how autis-
tics do on intention-from-motion categorization tasks: The types of ani-
mate intentions that different individuals can reliably categorize from
motion trajectories may indicate the presence or absence of different kinds
of empathic or social-attribution impairments.

Intention-from-motion heuristics could also be used in a variety of
practical applications. Many countries are increasing their use of closed-
circuit cameras to detect crime. Such crime detection is basically a prob-
lem of distinguishing criminal intentions and behavior patterns from be-
nign patterns, given motion cues. Even our simple cue-based methods of
distinguishing between pursuit, evasion, fighting, and play may find uses
in such systems. Automated crime-detection systems would not have to
be perfect on their own; they would only have to help security guards
identify which screen to pay most attention to out of the many screens
they are expected to monitor. Also, pharmaceutical companies often test
drugs by recording their effects on animal behavior patterns. Algorithmic
systems for categorizing rat behavior as aggressive, exploratory, or playful
may help in automating such evaluations. The problem of inferring inten-
tions from motion cues is so general that there are doubtless hundreds of
other related applications of simple fast and frugal decision heuristics.

Conclusions

In this chapter we have succeeded in uncovering a set of motion cues
that can be used to infer some major categories of adaptively important
intentions. The set of seven cues we proposed appears sufficient to cap-
ture the major regularities of motion in the six intentional categories we
investigated. We introduced a new simple algorithm, Categorization by
Elimination, that could accurately categorize motion patterns using a min-
imal number of cues, showing that these adaptively important inferences
can be made in a fast and frugal manner.

Our main goal has been to provide a basis for the concept of social
rationality, by finding simple motion cues and fast and frugal cue integra-
tion mechanisms that humans and other animals mav use to interact effec-
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tively with each other. Such mechanisms can exploit the fact that animate

a

motion tends to fall into a few rather stereotyped categories that can be .

derived from basic evolutionary and ecological principles. We tested the
competing decision algorithms on motion trajectories generated by human
subjects in the course of playing various computer-mediated interaction
games. We propose this methodological approach as a first step in examin-
ing how the basic building blocks of social cognition can be studied
through a combination of evolutionary principles, ecologically representa-
tive stimuli, human experimentation, and computer simulation of how
well different decision heuristics would perform against each other and
compared with human data. Our guiding principle has been that natural
environments' offer a few key motion cues, a few typical kinds of animate

motion, and a plethora of animals, including mountain lions, more than |

willing to eliminate others who fail to perceive the significance of their
movements,
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