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How cognition shapes cognitive
evolution 

Peter M. Todd, Center for Adaptive Be-
havior and Cognition 
Geoffrey F. Miller, Centre for Economic
Learning and Social Evolution

The tools we use shape the way we
construct our world. When cognitive
scientists began to model the evolution
of cognition, one tool they found readily
available was the genetic algorithm—a
software system for artificially evolving
solutions to problems that were speci-
fied by an explicit fitness function.1

This fixed fitness function took a poten-
tial solution as input and returned the
goodness of this solution as output. To
model the evolution of cognition, the
fitness function could represent some
environmental challenge, and the
evolved solutions could be cognitive
mechanisms for solving that problem.
Thus, models emerged for exploring
how learning could evolve in a fixed
environment,2 how language acquisition
could be shaped by specific benefits of
communication,3 and how simple sen-
sory-guided foraging could evolve in a
world with unchanging food locations.4

A moving target
The explicit, fixed fitness function—

representing a fixed environment that
cognition adapts to—is the default as-
sumption of the original genetic-algo-
rithm models. But this assumption is
more useful for doing engineering than
for modeling cognitive evolution. In
nature, the environment is rarely fixed.
The whole point of behavior is to affect
the environment somehow, so as behav-
ior evolves, the environment must be
affected. This can make the environ-
ment something of a moving target for

Evolution-based 
computational models 
of cognition

A current controversial trend in the cognitive sciences is to link evolutionary biology with psy-
chology in the study of cognition and human behavior.1 As a related, but more germane topic for
Trends & Controversies, I have asked several cognitive scientists to share their insights about cur-
rent trends in the use of computationalmodels of the evolution of cognition.

In the first essay, Peter Todd and Geoffrey Miller reflect on the evolution of scientists’ understand-
ing of evolution as a function of the kinds of modeling tools they create. Over the years, models of
the evolution of cognition have progressed from those in which the environment is assumed to be
static, to models in which the environment changes, but only in terms of physical characteristics, to
models in which the environment changes according to the influences of competitors that have per-
ceptual and cognitive abilities. They call this last psychological selection, and argue that sophisti-
cated models that assume adaptation based on complex interactions with other organisms might be
useful for AI researchers who are developing artificial models of cognitive complexity.

In the second essay, Domenico Parisi examines the interaction between biological inheritance and
cultural learning. He describes a model in which organisms learn from teachers, or conspecifics.
Learning in this scenario differs from that of standard machine learning, in that a pool of teachers is
assumed, and the best teachers are selected to train the students of the next generation. Additionally,
the teachers’output includes a slight amount of noise, thus allowing some students to acquire new
strategies and so become better than their teachers. This “cultural” form of transmission via learning
can interact with biological transmission of behavioral tendencies. For example, students might evolve
an ability to increase their physical proximity to teachers, which improves their fitness only indirectly.
Similar arguments are used to suggest how communication mechanisms (language) and technological
artifacts might evolve. Finally, Parisi suggests that the study of cultural and technological evolution
may be necessary for the understanding and reproduction of higher-level human cognition.

All authors in this installment have conducted modeling experiments using genetic algorithms,
neural nets, and other computational models. The third essay, by John Batali, presents a detailed
account of one such experiment.

Batali presents a model in which agents can perform one of four actions, and each action places the
agent in a new state. Some states have higher fitness values than others, and the more fit the agent’s
behaviors are on average, the more likely the agent is to be chosen to reproduce in the next generation.

The agent model consists of two parts, both represented by feed-forward neural networks. The
first part, called the model network, learns to predict which state results from which action. The
second part, called the evaluation network, tries to predict the fitness of performing a particular
action in a particular state. The evaluation network is not allowed to learn, and so its performance
cannot improve during the agent’s “lifetime.” However, the more fit the agent, the more likely it is
to reproduce and so pass on its evaluation network settings. The question Batali asks is: Will evalua-
tion networks evolve to produce better fitness predictions through inheritance? The answer is yes,
but with a surprising twist.

Batali’s simulations make the perplexing discovery that although the average fitness of the agents
rises significantly in 200 generations, the success at predicting the next state by the model network
decreases and the evaluation network acquires an inaccurate mapping from states to fitness. A careful
analysis reveals that agents with slightly distorted representations are actually more fit because they
allowed encoding of more flexible, adaptive strategies. Thus, these simulations suggest that cognitive
systems that represent false beliefs may well be adaptive.

In summary, Todd and Miller advocate the study of cognitive evolution in an environment that con-
sists of competitors with cognitive capabilities. Parisi argues that evolution includes learning from
teachers (cultural evolution), and this interacts with biological evolution. Finally, Batali argues that
evolving to learn somewhat inaccurate models of the world might be the most adaptive option for cog-
nition. All three themes should be thought-provoking for researchers in AI, whether they are seeking to
understand cognition or are looking for new techniques for the engineering of human-like behavior.

—Marti Hearst

1. J.H. Barkow, L. Cosmides, and J. Tooby, eds., The Adapted Mind: Evolutionary Psychology
and the Generation of Culture, Oxford Univ. Press, New York, 1992.
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cognitive evolution. For instance, better
foraging ability decreases the amount of
food remaining for others. Better color
vision in predators selects for better cam-
ouflage in prey. Better language-learning
capacities might increase the number of
words in the languages that need learning.

Our tools evolve along with our ways of
looking at the world. After a fair amount of
research on how cognition evolves in fixed
environments, a new niche opened up.
New models emerged where individual
behavior could have explicit effects on
environment structure, and where environ-
ment structure rather than a fixed fitness
function determined the evolutionary dy-
namics of survival and reproduction. This
made the fitness function implicit and dy-
namic rather than explicit and static. In
these artificial ecosystems, modelers again
explored the evolution of simple behaviors
such as foraging, exploration, and learning,
but now the distribution of environmental
resources changed over time as a conse-
quence of the behavior of the artificial or-
ganisms.5-7 Indeed, population sizes of the
organisms themselves changed as their
behavior evolved, further complicating the
evolution of their behavior. When old-style
genetic-algorithm methods modeled cogni-
tive evolution as an optimization process,
these new models introduced a competi-
tive, strategic, game-theoretic dimension.

But the behavior that evolves in these
systems has so far itself not been very com-
plicated. The environments that organisms
in these artificial ecosystems face still con-
sist largely of simple (albeit shifting) re-
source distributions, which present rela-
tively little cognitive challenge. To get to
situations where greater cognitive power is
required, we must look at much more chal-
lenging environments: those formed by
other evolving, behaving organisms. In
such environments, the major selective
forces affecting the evolution of one
species’cognition come from the cognitive
and perceptual abilities of the other organ-
isms, including prey, predators, competi-
tors for resources and mates, kin, offspring,
and allies. The eyes, ears, and brains of
such organisms impose a new set of selec-
tive forces that we can call psychological
selection, in contrast to the selection ex-
erted by nonadapting physical forces (such
as climate or local chemical composition)
or unthinking biological vectors (such as
plants or unicellular parasites).

Mating, and other games
Psychological selection can result in the

kinds of more sophisticated cognitive abil-
ities that traditionally interest researchers
in psychology, linguistics, artificial intelli-
gence, and other cognitive sciences. Es-
caping predators and capturing prey can
both benefit from the ability to predict the
behaviors of others given limited cues in
the present. Avoiding unnecessary conflict
with members of one’s social group is
aided by episodic memory for past
encounters with particular individuals
(“Have I ever fought Joe before? Did I win
or lose?”), and by the ability to communi-
cate one’s intent to escalate or abandon a
potential confrontation. And deciding what
individuals to pursue as mates is improved
by decision-making that combines knowl-
edge of a potential mate’s characteristics,
one’s own ability to win over that mate,
and the possibilities for other future mat-
ing opportunities. These forms of cogni-
tion—behavioral prediction, episodic
memory, communication of intent, multi-
ple-cue decision-making—are the sort of
abilities that models of psychological se-
lection can teach us something about, in
contrast to the simpler earlier models of
the evolution of learning or foraging in
fixed environments.

With the further enhancement of simula-
tion tools to allow extensive interaction be-
tween organisms in artificial ecologies,
models of psychological selection are now
starting to appear. Simulations of the evolu-
tion of pursuit and evasion are giving us
clues as to when protean behavior—or
adaptive unpredictability, such as a rabbit’s
zig-zag path when fleeing a fox—can
emerge.8 Game-theoretic models of the
strategic interactions between individuals
demonstrate the complicated paths by which
forgiveness and cooperation might evolve.9

Simulations of large interacting popula-
tions where new species can form have
been used to explore the evolution of com-
munication for altruistic or mate-attracting
functions.10And simulations of the mate-
selection process itself indicate how the
perceptual mechanisms used in choosing
sexual partners might co-evolve with the
behavioral mechanisms that mate choice
employs.11

The human connection
In these respects, the recent history of

this simulation research has some paral-

lels to the longer history of theories about
human evolution. Throughout the 1940s
and 1950s, models of human evolution
emphasized the fixed challenges of the
physical environment, and the behavioral
adaptations—tool-making, fire-making,
group hunting, long-range foraging—that
helped solve them. Then, with the rise of
neo-Darwinian theory and sociobiology
in the 1960s and 1970s, especially the
new models of kin selection, parent-off-
spring conflict, reciprocal altruism, and
sexual selection, theorists emphasized
how selfish genes lead to social competi-
tion at the individual and group levels.12

More recently, in the 1980s and 1990s,
primatologists and evolutionary psychol-
ogists have emphasized the importance of
social intelligence, Machiavellian behav-
ior, mate choice, and other smart, strate-
gic behaviors as forms of psychological
selection that have shaped human intelli-
gence.13

Many theorists now view the evolution
of the human mind as a positive-feedback,
bootstrapping process driven much more
by social selection and sexual selection
within our lineage than by the demands of
an external physical or biotic environment.
Perhaps AI research could benefit from this
view, using evolutionary methods that
allow cognitive complexity to catalyze its
own evolution gradually through social
competition and sexual selection, rather
than continuing the traditional engineering
method of trying to program cognitive
complexity directly in one shot.

Evolving minds
We have argued that cognitive adapta-

tions often have a dual role in evolution, as
both selectors and selectees. The implica-
tion is not that cognitive evolution is a
holistic mess beyond analysis, but rather
that we need the full power of computer
simulation to understand the kinds of co-
evolution and positive-feedback dynamics
that happen when minds guide their own
evolution. Like our changing simulation
methods, cognition is a tool for construct-
ing world views and altering environ-
ments, and it is a tool that adapts to those
environments it has changed. To fully cap-
ture the evolution of complex cognitive
mechanisms in our simulations, then, we
must continue to develop models that
allow cognition to shape its own evolu-
tionary destiny. 
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Cultural evolution in neural
networks

Domenico Parisi, National Research
Council, Rome 

Many behaviors and capacities that hu-
mans exhibit are culturally learned; that is,
we learn them from conspecifics. A simple
neural network model of learning from con-
specifics takes the following form. Two
different networks are exposed to the same
input and they respond with some output.
One network (the student) uses the output
of the other network (the teacher) as teach-
ing input for the backpropagation proce-
dure. This procedure compares the student’s
output with the teacher’s and, based on the
discrepancy between the two, changes the
connection weights of the student such that
the student progressively learns to behave
like the teacher. Whatever behavioral ca-
pacity the teacher possessed, that capacity
now transmits to the student.

The social (or cultural) transmission of

behaviors can serve not only to preserve
existing behavioral capacities across suc-
cessive generations but also to create new
capacities. Imagine a population of organ-
isms living in an environment that contains
randomly distributed food elements. Each
individual receives information about the
location of the nearest food from its senses
and responds with some movement. The
neural network controlling the individual’s
behavior encodes in its input units the posi-
tion of the nearest food and in its output
units some movement of turning or moving
forward. The initial population has ran-
domly assigned connection weights. Hence,
the initial population of individuals will
have little capacity to procure food. 

Teacher training
But imagine if the individuals who col-

lected the most food are selected as teachers
for the next generation of individuals (their
students). Imagine further that some random
noise is added to the teachers’output when

.
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