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and The tools we use shape the way we
construct our world. When cognitive
isscientists began to model the evolution
natlf,cognition, one tool they found readily
W available was the genetic algorithm—a
ingoftware system for artificially evolving
Val¥iutions to problems that were speci-
I:(t)|¥ieac‘1 by an explicit fitness functioh.

) Yis fixed fitness function took a poten-
tial solution as input and returned the
s,goodness of this solution as output. To

ednodel the evolution of cognition, the
fithess function could represent some
eseimyironmental challenge, and the
erggolved solutions could be cognitive
Srafi@ihanisms for solving that problem.
herhus, models emerged for exploring
~ how learning could evolve in a fixed
] environment how language acquisition
s could be shaped by specific benefits of
vafihmunicatior?,and how simple sen-
/eSory-guided foraging could evolve in a
world with unchanging food locatioris.
nts
rkA moving target
arefuthe explicit, fixed fitness function—
h_‘?épresenting a fixed environment that
"¥Sgnition adapts to—is the default as-
sumption of the original genetic-algo-
rithm models. But this assumption is
more useful for doing engineering than
cofpr modeling cognitive evolution. In
ghature, the environment is rarely fixed.
r. The whole point of behavior is to affect
the environment somehow, so as behay
ior evolves, the environment must be
affected. This can make the environ-
ment something of a moving target for




cognitive evolution. For instance, better
foraging ability decreases the amount of
food remaining for others. Better color
vision in predators selects for better eam
ouflage in preyBetter language-learning
capacities might increase the number of
words in the languages that need learnin
Our tools evolve along with our ways o
looking at the worldAfter a fair amount of

research on how cognition evolves in fixe

environments, a new niche opened up.
New models emeged where individual
behavior could have explicitfetts on
environment structure, and where enviro
ment structure rather than a fixed fitness
function determined the evolutionary-dy
namics of survival and reproductiorhis
made the fitness function implicit and-dy
namic rather than explicit and static. In
these artificial ecosystems, modelers ag3
explored the evolution of simple behavior
such as foraging, exploration, and learnin
but now the distribution of environmental
resources changed over time as a conse
quence of the behavior of the artificiat or
ganisms>’ Indeed, population sizes of the
organisms themselves changed as their
behavior evolved, further complicating th
evolution of their behavioWhen old-style

genetic-algorithm methods modeled cegni the evolution of learning or foraging in

tive evolution as an optimization process
these new models introduced a competi
tive, strategic, game-theoretic dimension

But the behavior that evolves in these
systems has so far itself not been very €g
plicated.The environments thatganisms
in these artificial ecosystems face still eo
sist lagely of simple (albeit shifting) re
source distributions, which present rela
tively little cognitive challengelo get to
situations where greater cognitive power
required, we must look at much more eha
lenging environments: those formed by
other evolving, behaving ganisms. In
such environments, the major selective
forces afecting the evolution of one
speciestognition come from the cognitive
and perceptual abilities of the othegan
isms, including preypredators, competi
tors for resources and mates, kirfspfing,
and alliesThe eyes, ears, and brains of
such oganisms impose a new set of seleg
tive forces that we can call psychological
selection, in contrast to the selection ex
erted by nonadapting physical forces (su
as climate or local chemical composition
or unthinking biological vectors (such as
plants or unicellular parasites).

ch

Mating, and other games
kinds of more sophisticated cognitive abi

in psychologylinguistics, artificial intell
gence, and other cognitive sciences. Es
g.caping predators and capturing prey can

behaviors of others given limited cues in

with members of one’social group is
aided by episodic memory for past
encounters with particular individuals
n (“Have | ever fought Joe before? Did | wi
or lose?”), and by the ability to communi
cate ones intent to escalate or abandon 4
potential confrontatiorAnd deciding what
individuals to pursue as mates is improve
by decision-making that combines knewl
liredge of a potential magetharacteristics,
sone’s own ability to win over that mate,
gand the possibilities for other future mat
ing opportunitiesThese forms of cogni
tion—behavioral prediction, episodic
memory communication of intent, muiti
ple-cue decision-making—are the sort of
abilities that models of psychologicalse
e lection can teach us something about, in
contrast to the simpler earlier models of

fixed environments.

With the further enhancement of simula
tion tools to allow extensive interaction-be
tween oganisms in artificial ecologies,

mmodels of psychological selection are no
starting to appeaBimulations of the evolu
n tion of pursuit and evasion are giving us
clues as to wheprotean behavieror
adaptive unpredictabilifpuch as a rabhst’
zig-zag path when fleeing a fox—can
isemepge® Game-theoretic models of the
1| strategic interactions between individuals
demonstrate the complicated paths by wh
forgiveness and cooperation might evdlve
Simulations of lage interacting poputa
tions where new species can form have
been used to explore the evolution of eon
munication for altruistic or mate-attracting
functions®And simulations of the mate-
selection process itself indicate how the
perceptual mechanisms used in choosing
sexual partners might co-evolve with the
behavioral mechanisms that mate choice
employst

The human connection
In these respects, the recent history o

Psychological selection can result in th

ities that traditionally interest researchers

f both benefit from the ability to predict the

dthe presentvoiding unnecessary conflict

n evolution and positive-feedback dynamics
)

lels to the longer history of theories about
ehuman evolutionThroughout the 1940s
and 1950s, models of human evolution
emphasized the fixed challenges of the
physical environment, and the behavioral
adaptations—tool-making, fire-making,
group hunting, long-range foraging—that
helped solve thenThen, with the rise of
neo-Darwinian theory and sociobiology
in the 1960s and 1970s, especially the
new models of kin selection, parent-of
spring conflict, reciprocal altruism, and
sexual selection, theorists emphasized
n how selfish genes lead to social competi
tion at the individual and group levels.
More recentlyin the 1980s and 1990s,
primatologists and evolutionary psychol
2cbgists have emphasized the importance @
social intelligence, Machiavellian behav
ior, mate choice, and other smart, strate
gic behaviors as forms of psychological
selection that have shaped human intelli
gence!d
Many theorists now view the evolution
of the human mind as a positive-feedback,
bootstrapping process driven much more
by social selection and sexual selection
within our lineage than by the demands of
an external physical or biotic environment.
Perhap#\l research could benefit from this
view, using evolutionary methods that
allow cognitive complexity to catalyze its
own evolution gradually through social
competition and sexual selection, rather
than continuing the traditional engineering
method of trying to program cognitive
complexity directly in one shot.

D

Evolving minds
We have agued that cognitive adapta

tions often have a dual role in evolution, as

both selectors and selecte€ke implica
ction is not that cognitive evolution is a
. holistic mess beyond analysis, but rather
that we need the full power of computer
simulation to understand the kinds of co

that happen when minds guide their own
evolution. Like our changing simulation
methods, cognition is a tool for construct
ing world views and altering enviren
ments, and it is a tool that adapts to those
environments it has changéib fully cap
ture the evolution of complex cognitive
mechanisms in our simulations, then, we
must continue to develop models that

f allow cognition to shape its own evelu

this simulation research has some paral

tionary destiny
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behaviors can serve not only to preserve
existing behavioral capacities across-suc
cessive generations but also to create new,
capacities. Imagine a population ofan
isms living in an environment that contains
randomly distributed food elements. Each
individual receives information about the
location of the nearest food from its senses

networks

Council, Rome

Many behaviors and capacities that hu
mans exhibit are culturally learned; that is,
we learn them froraonspecificsA simple
neural network model of learning from eon and responds with some movemditte
specifics takes the following forriwo neural network controlling the individual’
different networks are exposed to the samebehavior encodes in its input units the posi

input and they respond with some output.
One network (thstuden) uses the output
of the other network (thieache) as teach
ing input for the backpropagation prece
dure.This procedure compares the studen
output with the teachis and, based on the
discrepancy between the two, changes the

tion of the nearest food and in its output
units some movement of turning or moving
forward.The initial population has ran

domly assigned connection weights. Hence,
t'the initial population of individuals will

have little capacity to procure food.

connection weights of the student such thaffeacher training

the student progressively learns to behave
like the teacheWhatever behavioral ea

now transmits to the student.
The social (or cultural) transmission of

But imagine if the individuals who col
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lected the most food are selected as teachers
pacity the teacher possessed, that capacityfor the next generation of individuals (their

students). Imagine further that some rando
noise is added to the teachenstput when
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