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Abstract

In a previous SAB paper [10], we presented
the scientific rationale for simulating the co-
evolution of pursuit and evasion strategies. Here,
we present an overview of our simulation meth-
ods and some results. Our most notable results
are as follows. First, co-evolution works to pro-
duce good pursuers and good evaders through a
pure bootstrapping process, but both types are
rather specially adapted to their opponents’ cur-
rent counter-strategies. Second, eyes and brains
can also co-evolve within each simulated species
— for example, pursuers usually evolved eyes on
the front of their bodies (like cheetahs), while
evaders usually evolved eyes pointing sideways or
even backwards (like gazelles). Third, both kinds
of coevolution are promoted by allowing spatially
distributed populations, gene duplication, and an
explicitly spatial morphogenesis program for eyes
and brains that allows bilateral symmetry. The
paper concludes by discussing some possible ap-
plications of simulated pursuit-evasion coevolu-
tion in biology and entertainment.

1 Introduction

At SAB94 we argued that it’s important, interesting, and
useful to simulate the co-evolution of pursuit and evasion
strategies, and presented some preliminary results [10].
In that paper we presented a review of the relevant lit-
erature (e.g. [7]); since then, other comparable work has
appeared (e.g. [13, 14]).

In the intervening two years of project development,
we have improved our methods and generated more de-
tailed and more complete results. This paper gives an
overview of our current methods and some results from
this ongoing research. We include only the briefest recap
of the intellectual motivations and scientific background
for this project, which we have covered at length else-
where [9, 10, 11, 6]. Much of our effort in this project
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was directed at improving our simulation methods to
cope with the sometimes frustratingly slow and baffling
process of coevolution. The populations were changed
from traditional “pools” to spatially organized matri-
ces with local competition, mating, and replacement.
Many evaluation functions were tried and failed before
a few were found that worked. We now use a more ef-
ficient contest method where individuals play the “Last
Elite Opponent” (LEO) [14, 12]. New analysis methods
were developed to see whether directional progress is oc-
curring during coevolution, including cross-generational
bit-string correlation matrices and gene persistence plots
(see [6]). This paper is offered in part as a traveler’s ad-
visory about the pitfalls of venturing unprepared into the
Red Queen’s protean world.

In brief, the intellectual background for our work stems
from the observation that animals survive and reproduce
by exploiting “fitness affordances” [11] in their environ-
ment, and that some of these affordances are themselves
mobile animals that do not want to be exploited (e.g.
prey, coy females, hosts avoiding parasites). This basic
conflict of interest between two mobile animals typically
leads to a pursuit-evasion contest, where one animal tries
to catch the other to do something to it (eat it, mate
with it, suck its blood). Over generations, these contests
result in a co-evolutionary arms race between pursuit
strategies and evasion strategies, where animals evolve to
be faster, more maneuverable, better at predicting each
other’s next moves, and better at being unpredictable
[10, 9]. Pursuit and evasion have been studied from dif-
ferent angles by behavioral biology, neuroethology, dif-
ferential game theory, and previous SAB work. Thus,
pursuit-evasion contests are among the most important,
challenging, and co-evolutionary of all animate behav-
iors. But in their scientific analysis, there is a large
gap between the over-simplicity of game-theory models
and the baffling complexity of real pursuit-evasion wet-
ware as studied by neuroethology. SAB-style simulation
may help fill the gap, by illuminating the co-evolution
of strategies that are complex enough to include inter-
esting examples of perceptual specializations, prediction,
and proteanism, but not too complex to analyze.



2 Simulation Methods

Our pursuit-evasion coevolution simulator has been de-
veloped and refined to serve the study of co-evolutionary
arms races, to characterize the resulting behavioral
strategies, and to analyze the underlying sensory-motor
architectures that generate the observable behaviors
through interaction with the environment. The simula-
tion approximates a spatiotemporally continuous system
by updating a model of the animats in their environment
at a rate of 100 frames per simulated second. Here we
summarize some of the most significant details.

The following sections describe the equations govern-
ing the physical dynamics of motion for the animats, the
artificial neurons used in the simulations, the genetic en-
coding of the controller specifications as bit-strings for
operation on by the genetic algorithm, and then details
of the genetic algorithm itself.

2.1  Physical Dynamics

In all our work to date, we have employed a two-
dimensional (2-D) simulation, where circular animats
chase each other around on an empty infinite plane: there
are no obstacles or boundaries in the animats’ world.
The primary motivation for such a gross simplifying as-
sumption is one of computational economy. Despite the
lack of a third spatial dimension, we employed a fairly
realistic model physics.

The neural network for each animat gives two output
values referred to as v; and v,: these are treated respec-
tively as left and right motor signals, giving a differential-
steer system (i.e. the rate of change of angle of orien-
tation is dependent on the difference between the left
and right motor settings, as in many two-drive-wheeled
mobile robots). The equations of motion are based on
simple Newtonian point physics.

Specifically, the relevant equations for translating from
the output values to the accelerations are:
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for forward movement, where m is the animat mass, cf
is a friction coefficient, and k; is a scale factor; and:
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for changes of orientation angle «, where ¥ 1s the animat

moment of inertia, ¢, is an angular friction coefficient,
and k, 1s a scale factor.

The use of these ‘realistic’ equations of motion mean
that the animats take time to accelerate to a desired
speed (either linear or angular). Note also that there are
no ‘brakes’: rather, the drag/friction coefficients mean
that if there is a reduction in motor output, the speed
falls exponentially towards the new steady-state value.

ka(vl - Ur) (2)

The values of m, ¢y, ky, ¥, cq, and kg are held fixed for
any one experiment, but we have experimented with a
number of settings of these parameters. Clearly, the rela-
tive settings can have a large effect on what constitutes a
sensible strategy for pursuit or evasion. In the limit, the
relative settings can determine the likelihood of anything
interesting happening. Figure 1 shows an impressionistic
rendering of the effects the relative pursuer/evader dy-
namics have on the outcome of the contests. A schematic
2-dimensional space 1s shown, with the horizontal axis
being a measure of the angular motion capabilities of
the pursuer (P) relative to the evader (E), and the verti-
cal axis measuring the relative linear motion capabilities.
In the horizontal, there will be some threshold value past
which the pursuer can reliably out-turn the evader, and
in the vertical there will be a threshold beyond which
the pursuer can in principle catch up with the evader.
These two threshold lines partition the space into four
zones. The further into the upper-right zone, the greater
the chances of pursuers winning all contests (they can
catch up with the evaders, and out turn them too); the
further to the lower-left, the more likely the evaders are
to do very well (the pursuers can neither catch them
nor out-turn them). Thus, if there are asymmetries in
the dynamics (i.e. the pursuers and evaders have dif-
ferent parameters for the equations of motion) then for
interesting trials, the pursuer’s maximum linear speed
should be greater than the evader’s (so the pursuer can,
in principle, catch the evader), and the evader’s maxi-
mum angular speed should be greater than the pursuer’s
(so the evader can, in principle, dodge and out-turn the
pursuer).

Relative Speed l
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Figure 1: Impressionistic illustration of the effects of relative
kinematics on the likely outcome of a pursuit-evasion contest. See
text for explanation

The results described later in this paper come from
experiments where the kinematics were symmetric: that
is, the pursuers and evaders had identical parameter val-
ues for their equations of motion. Thus, the pursuer
and evader have the same accelerations and maximum
speeds, which gives a clear advantage to the evader. This
is because, as long as the trial starts with sufficient dis-
tance between the pursuer and evader for the evader to
turn to face away from the pursuer before the pursuer



can hit the evader, the evader need only perform such
a turn and then accelerate to top speed to avoid be-
ing caught — its top speed is the same as the pursuer’s.
To redress the balance, the animats were given a lim-
ited stock of ‘energy’ or ‘fuel’, with the pursuer having
(slightly) more initial energy than the evader. Energy
consumption rose as a quadratic function of linear force
exerted, so an animat could ‘dawdle’ by moving slowly
for a long period of time, or ‘burn out’ by accelerating
to maximum speed and using up all its energy in a few
seconds. When energy fell to zero, the motor outputs
were disabled and the animat would drift to a halt, be-
ing slowed by the simulated friction. Small amounts of
random noise were also added onto the values of v; and
v, so that movement was nondeterministic.

2.2 The Neuron Model

We used continuous-time recurrent neural networks of
a type which have recently been the subject of detailed
analysis (e.g. [1]). The activity of a single ‘neuron’ pro-
cessing unit is described by the equation:

dy;
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Where: y; is the activity of unit ¢; 7; is the time-

constant for unit ¢; o;(£) is a sigmoidal function with bias
term (threshold) 6;; wj; is the weight of the connection
from unit j to unit ¢; A;(¢) is spontaneous noise injected
at time ¢, from a uniform distribution centered on zero;
and Z;(t) is external (sensory) input at time ¢.

For each unit, the values for §; and 7;, and the upper
and lower bounds on the distribution of AN explicitly
set by a sequence of bits on the genotype. The values
for w;; and Z; were also genetically specified, but not
explicitly. Rather, they were derived from the ‘morpho-
genesis’ process: this is described in Section 2.3. The
connection strengths w;; remained constant throughout
the ‘lifetime’ of each animat: in this sense, there was no
opportunity for ‘learning’.

We had only one sensory modality: simulated ‘flat-
land vision’ in the 2D plane. Photoreceptor cells could
be placed on the perimeter of the animat’s circular body,
with their location, orientation relative to the body, and
angle of acceptance all being genetically specified. The
response of a photoreceptor was proportional to the per-
centage of its acceptance angle that was not occupied by
the opponent’s circular body. The relevant 2-D projec-
tion equations are trivial when it i1s known that there 1s
only one object in the visual world. The equations could
thus be solved analytically, without recourse to numeric
approximation techniques; but random noise was added
in to ensure that sensing was nondeterministic and that
there was a lower limit on resolution (i.e. small signals
could be swamped by noise).

2.3  Genetic Encoding and Morphogenesis

The architectures for the neural-network sensory-motor
controllers were specified by bit-string genotypes. In
common with past work in evolving such controllers
for artificial autonomous agents (e.g. [4]) we treat the
arrangement of the sensory morphology as an intrin-
sic part of the controller-network specification. The
controller-network is encoded as strings of binary dig-
its (bits). Rather than use variable-length genotypes to
allow varying numbers of units in the networks (e.g. [4]),
we use fixed-length genotypes, partitioned into a num-
ber of ‘fields’. At the start of each field is a sequence of
bits which governs whether that field is ‘expressed’ —i.e.
whether 1t is ignored or read to form part of the specifi-
cation for the network. Each field contains bit-sequences
that govern parameters that define an individual neuron:
the neuron has a particular genetically-specified physical
location within the animat’s 2D circular body; and there
are genetically set parameters that determine the growth
(on the body) of a fractal ‘input’ tree and a fractal ‘out-
put’ tree. If the input tree of one unit intersects the
output tree of another unit, and certain other geneti-
cally specified conditions are met, then a connection is
made joining the input to the output, with the strength
of the connection being affected by the geometry of the
intersection of the two trees. If the unit’s output tree
terminates within a central zone on the animat’s body,
then it becomes a motor output unit, affecting the left or
right output value depending on the precise geometry of
the termination point(s). If a unit’s input tree extends
beyond the perimeter of the body, then that unit be-
comes a visual input unit, with the location, orientation,
and acceptance-angle of the corresponding photosensor
being set by the geometry of the tree’s intersection with
the body-edge. Finally, each field contains a sequence of
bits that can specify symmetric expression: if a neuron
is expressed symmetrically, then a copy is created by re-
flecting the neuron’s body and input and output trees
about the animat’s longitudinal axis. Full details of the
encoding scheme are given in [3].

This encoding scheme has proven to offer consider-
able power. It allows for some units in the network to
be “hidden”(cf. interneurons), others to be sensory in-
put neurons, and others to be motor output neurons.
But most interestingly, it is possible for a unit to be
both sensory and motor. This capability, coupled with
the relative ease of generating bilaterally symmetric de-
signs, means that random genotypes often encode simple
but very effective Braitenberg- Vehicle-like controller ar-
chitectures (cf. [2]). Almost equally as often, random
designs may have no motor outputs, no sensory inputs,
or no connection between sensors and motors.

For this reason, we use “animat eugenics” to increase
efficiency: when generating the initial random popula-
tion of genotypes, or breeding a new individual from two



parents, a viability check is made: individuals with insuf-
ficient numbers of sensors or motors are rejected imme-
diately. Then the genome is expressed to give a network,
and a garbage collector deletes any disconnected units.
If, after garbage collection, the network is still viable,
it is added to the population. Otherwise, the genotype
is discarded and another new one generated and tested:
the process repeats until a viable genotype is generated.

One aspect of using this encoding scheme in practice
is that typically there are significant sequences of bits on
the genotype which constitute ‘junk DNA’; in that they
don’t contribute to the phenotype. Bits in a field which
has the expression sequence set to “off” have no effect on
the phenotype, and nor do bits that specify neurons that
are expressed but subsequently deleted by the garbage
collector because they don’t connect to anything. How-
ever, we are cautious about the use of the term ‘junk
DNA’: subsequent recombination or mutation could lead
to an unexpressed field being expressed or to a discon-
nected neuron being connected. Thus, we prefer use of
terms such as ‘silent’ or ‘resting”’ DNA rather than ‘junk’.
One practical effect of silent DNA in the genomes is that
a mutation in a silent sequence has no immediate effect.
To counter this, we use mutation rates which would be
considered very high in more standard encodings where
every bit counts.

2./  The Genetic Algorithm

Our genetic algorithm (GA) involves a population of pur-
suers and a population of evaders. Both populations are
the same size. We use a spatially distributed GA, where
individual genotypes in each population are spread out to
occupy discrete positions on a grid. Individuals will only
breed with nearby neighbors, and the offspring will re-
place nearby less-fit individuals. The grid has a toroidal
topology so there are no edge effects.

The GA proceeds in discrete generations. In the very
first generation, each individual is tested against a set of
randomly-chosen individuals from the opponent genera-
tion. In all subsequent generations, individuals are tested
against the best individual in the opponent generation
on the previous generation — this “last elite opponent”
(LEO) evaluation was introduced in [14, 12].

In each test, the genotype is given a number of {rials:
these are individual pursuit-evasion contests. The initial
conditions for the trials are varied using standard statis-
tical precautions. The final fitness of the individual was
calculated as the mean fitness score from the set of trials.
The evader fitness score was simply the length of time
it lasted before being hit by the pursuer. The pursuer’s
fitness score was slightly more complex: they received
fitness points if they were approaching the evader, and
received a bonus if they hit the evader; this bonus was
dependent on the time of the collision, and was two or-
ders of magnitude bigger than the points received for

approaching the evader, so pursuers that collided with
evaders were much more fit than those which stealthily
tracked their opponents. It should be noted that many
fitness functions were tried before we arrived at this suc-
cessful combination.

In each trial, the pursuer and evader start at their
initial positions and orientations, with all activities in
their neural networks set to zero. Once the trial has
started, i1t continues until the animats collide, or both
run out of energy and drift to a halt, or a fixed time-
limit is reached.

Once all individuals in both populations have been
evaluated, two new populations are bred. The breed-
ing uses the standard GA operators of mutation and
crossover, plus a duplication operator discussed further
in Section 3.1. To breed a new individual, two ‘parent’
individuals are chosen using probabalistic rank-based se-
lection. One of the two parents is chosen at random,
and the process of copying its genotype into the ‘child”s
genotype commences. Once each bit i1s copied, a ran-
dom number is generated from a uniform distribution. If
this is less than some threshold value, then the copying
pointer is switched to the corresponding position on the
other parent. The number of crossovers in the reproduc-
tion of any one ‘child’ thus follows a poisson distribution:
there will always be a finite probability that reproduction
is asexual (i.e. number of crossovers is zero). Mutation is
also applied on a bit-wise basis, with a different thresh-
old value, so the number of mutations per reproduction
also follows a poisson distribution.

3 Results

As is common in our experience of using artificial evo-
lution, we witnessed many failed experiments before we
experienced consistent evolution of animats exhibiting
desired types of behaviors. Here we make a general ob-
servation about what we learned from one of the causes
of our many failures, and then give a behavioral-level
overview of a run that yielded some interesting results.

3.1 A Lesson from Failures: Duplication

The genetic encoding and morphogenesis technique we
employed, along with the viability checks and garbage
collection, almost guaranteed that at the start of a run,
the most successful individuals would have very sim-
ple neural architectures similar to Braitenberg’s Vehi-
cles; with a symmetrical arrangement of a few (typically
two or four) sensors connected to the motors by either
‘crossed’ or ‘uncrossed’ connections (i.e. connected con-
tralaterally or ipsilaterally). Very often, any subsequent
improvement in performance was due solely to variation
and selection operating on the parameters of the indi-
vidual neurons in the animat: the number of neurons
almost never increased, even when there was a capacity



on the genotype for ten or fifteen more. The improve-
ment in performance, even after 1000 generations, was
often only a small percentage of the initial performance
of the random-genotype architecture.

We came to understand that this was because these
small Braitenberg-style controller networks typically
have very high epistatic boundaries around them in geno-
type space. That is, adding in one or more extra neurons
at random almost always resulted in significant degrada-
tion of performance. The initial networks were so small
that adding new neurons typically has a huge negative
impact on the network’s performance.

To remedy this, we borrowed another genetic operator
from nature. Whereas many artificial evolution systems
employ crossover and mutation, duplication is somewhat
less widely used. In our implementation, duplication
would take a single genetic field and copy it into another
field on the genotype. If the field had its expression bits
set to an active sequence, the resulting controller network
would have extra neurons, but they would be (almost)
identical to the units in the current successful network,
and so would be unlikely to have a negative effect on the
overall behavior. Subsequent mutations could smoothly
alter the parameters encoded on one of the copied neu-
ron fields, allowing for the other copy to either remain
the same or, more importantly, to change and hence co-
adapt to the effects of the new unit(s). Once duplication
was employed, we found that the number of units would
often increase significantly over the course of a run, and
this would be reflected in significant increases in perfor-
mance. The discussion of Figure 10 in the next section
illustrates duplication in action.

3.2 A Run That Worked

Results from individual trials between the elite pursuer
and elite evader at various stages in a co-evolutionary
experiment are shown in Figures 2 to 9. These figures all
come from the same single run with pursuer and evader
population sizes of 100, arranged in 10 x 10 grids, lasting
for 1000 generations. We used LEO evaluation, with
15 trials per test; fitness being the average score. The
time-limit on each trial was 15 simulated seconds, which
typically took less than one second of real time. Animats
were viable if they had at least two motor output neurons
and at least one sensory neuron. The genetic algorithm
was configured to give (on the average) 1.1 crossovers, 7.0
mutations, and 0.1 duplications per reproduction event.
The genotypes had seven unit-fields, so the maximum
number of units in an animat’s network is 14 (i.e. all 7
fields expressed and bilaterally symmetric).

Figure 2 shows traces of the 2D paths made by the
elite pursuer and evader from generation 0. These two
animats are the best of the initial population, with
randomly-specified genotypes. Traces of some significant
variables are shown in Figure 3: the first nine graphs are,

from the top: distance between animats (in meters: the
animat bodies have a radius of 9mm); pursuer’s ‘tar-
get bearing’ (in radians: a value of zero implies that
the evader is straight ahead); evader’s ‘target bearing’
(in radians: a value of zero implies that the pursuer is
exactly behind); pursuer forwards velocity (m-s~1); pur-
suer angular velocity (radians-s™!); evader forwards ve-
locity; evader angular velocity; pursuer energy (arbitrary
units); and evader energy. The next two graphs are out-
put activities of the pursuer’s two ‘neural’ units, followed
by six graphs showing outputs of the units in the evader’s
network (the networks are shown in Figure 10).

These two figures give some indication of the relatively
rich behavior that can be produced by randomly con-
nected noisy continuous-time recurrent neural networks.
However, the behaviors exhibited by both the pursuer
and the evader are somewhat distant from what we de-
sire: the pursuer is supposed to chase the evader, but
instead it starts by moving away from the evader. Sim-
ilarly, the evader is supposed to be running away from
the pursuer, but it’s not: it moves towards the pursuer,
and then (around t=4.3s) it starts turning in a tight cir-
cles for about five seconds. By this time, the pursuer
has (as a result of random activity in its units) turned
around and is heading toward the evader. It continues on
a straight path, while the evader wanders around some
more. The trial ends after the allotted 15 seconds with-
out a collision: notice also that both animats have signif-
icant amounts of energy remaining at the end of the trial.
Clearly, there i1s room for improvement here. But even
though these two animats are bad, they are not as bad
as others in their populations. Because this is the first
generation, and the genotypes for the two populations
were randomly generated by the same processes, at this
stage some predators may run away at top speed from
the evader; some evaders may actively seek the preda-
tor; and many animats in both populations will simply
do nothing at all.

Evader Start Pursuer Start

Figure 2: Pursuit-Evasion trajectory from generation 0. Plot
shows start position of Pursuer (solid) and Evader (dotted): the
circles are the same diameter as the animat ‘bodies’. The paths
taken by the two animats are marked with dots at one-second
intervals, and the positions at the end of the trial are also shown
(after 15 seconds). See text for further discussion.

Figure 4 shows the paths from a trial between the elite
pursuer and evader after 200 generations of co-evolution.
The pursuer is clearly chasing the evader, and the evader
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Figure 3: Data traces from the trial shown in Figure 2: horizontal
axis is time, with tick-marks at one-second intervals. See text for
explanation and discussion.

is clearly running away from the pursuer. But, as is il-
lustrated in Figure 5, the pursuer strategy involves ac-
celerating to near-maximum velocity, slowing only as a
consequence of the need to slow one wheel for turning
through differential steering. This policy consumes en-
ergy rapidly, and at around t=8s the pursuer’s energy
falls to zero: its motor outputs shut off, and it coasts
to a halt. The evader has not been moving so fast, and
hence has sufficient energy to last until very near the end
of the trial, continuing to move away from the stalled
pursuer. So, the pursuer is exhibiting the right kind of
behavior but lacks subtlety, and the evader is also show-
ing roughly appropriate behavior, although it is difficult
to judge how it would fare against a more sophisticated
pursuer.

Pursuer Start

e

" Evader Start

Figure 4: Pursuit-Evasion trajectory from generation 200. Dis-
play format as for Figure 2.
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Figure 5: Data traces from the trial shown in Figure 4. Note that
the vertical-axis ranges for distance, linear velocity, and angular
velocity, have all been increased from those used in Figure 3.

Results from a contest between the elites of the two
populations after 999 generations are shown in Figures 6
and 7. As can be seen both from the trajectory and from
the graphs of target-bearings for both the pursuer and
the evader, the pursuer keeps itself pointed straight at
the evader, and the evader keeps the pursuer right on



its “6-o’clock”: again the pursuer uses all its energy and
drifts to a halt, but its chasing strategy has forced the
evader to use much more energy, and only about half a
second later the evader also stalls. Presumably, slower-
moving evaders have been selected against because they
are more readily caught by the pursuers. This is not
to say that a slower evader would necessarily be worse:
a point we illustrate below. Nevertheless, at this stage
in the coevolutionary process, neural network controllers
for pursuit and evasion have manifestly been successfully
co-evolved.

Pursuer Start

7 Evader Start

Figure 6: Pursuit-Evasion trajectory from generation 999. Dis-
play format as for Figure 2.

So, even after 999 generations, we have a pursuer
which fails to catch the evader: this was also the situa-
tion at generation 200, and indeed at generation 0. As
we discussed at length in an earlier paper [6], to check for
progress or improvements in performance, it can be in-
formative to test a current individual against ancestors of
its current opponent(s). As an example, Figures 8 and 9
show trajectories and data traces from a trial where the
best pursuer from generation 999 is pitted against the
best evader from generation 200: as can be seen, the pur-
suer is indeed capable of catching some types of evaders,
but the evaders at its generation are well enough adapted
to its pursuit strategy that they get away successfully. It
is notable that the generation-999 pursuer is markedly
less accurate in chasing the generation-200 evader: it
overshoots and corrects a couple of times before the final
collision. This may be a sign that the ancestral evader
is exhibiting a strategy which the pursuer is less well
adapted to than the strategy of the evaders at its own
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Figure 7: Data traces from the trial shown in Figure 6. Note that,
in comparison to Figure 5, the vertical axis range for distance has
been decreased, and the axis range for pursuer angular velocity
have been increased.

generation: the generation-200 evader holds its speed at
approximately 75% of the speed that the generation-999
evader runs at; the generation-999 pursuer may coordi-
nate its turns and lunges with an ‘expectation’ that the
evader 1s moving at the higher speed, and so it has some
trouble with a slow evader from an ancestral generation:
this is an example at the behavioral level of the effects
of limited “genetic memory” [6].

Pursuer Start

Evader Start

Figure 8: Pursuit-Evasion trajectory resulting from testing
evader from generation 200 against pursuer from generation 999.
Display format as for Figure 2.
t=8.6sec.

Trial ends with collision at



Distance
T — T T
T 1

L0 i
Pursuer_Target_Bearing_off_front
e e A B e

"
Evader_Target_Bearing_off_rear
T T T T T

Pursuer_Linear_Yelocit
: P S T T

Pursuer_Angular_Yelocity
== T

L L
Evader_Linear_Yelocity
T T T T T T

Evader_Angular_Yelocity

L
Pursuer_Energy
T

:vader_Er?ergLT]

Figure 9: Data traces from the trial shown in Figure 8. Data
recording continues after the collision at t=8.6sec, but all values
are frozen.

The evolutionary changes in the morphology of the
pursuer and sensory-motor networks are illustrated in
Figure 10.

4 Further Work

Our work to date has demonstrated that the co-evolution
of continuous-time recurrent neural-network controllers
for pursuit and evasion strategies in environments with
realistic sensory-motor dynamics is a reasonable thing to
do. In this section we discuss some of the future direc-
tions this research could be taken in.

4.1 Applications in Biology

As we discussed in [10], there is a wealth of biological
literature on pursuit and evasion in animals, with analy-
sis at a variety of levels ranging from evolutionary argu-
ments down to neuroethological studies of neural circuits
governing pursuit/attack and evasion/escape.

In [5] it is noted that, just as artificial evolution can
be used to semi-automatically propose new designs for
the sensory-motor control architectures of artificial au-
tonomous agents, so it could (in principle at least) be
used to propose new ‘designs’ for neural sensory-motor
coordination mechanisms in animals: the designs would
effectively be models for the neuroarchitecture underly-
ing an observable behavior in an animal. For this to
be workable, it would be necessary to set up a simula-
tion system where the physical and neural dynamics of
the evolving animats are biologically plausible, and the
evolutionary process only generates biologically plausi-

Figure 10: Plots of the sensory-motor morphologies of the elite
pursuer and evader at generations 0, 200 and 999. Each plot is a
top-down view of the animat, with the front toward the top of the
page. The large circle is the extent of the animat’s body. The inner
dashed concentric circle marks a “spinal chord” zone on the body
where the termination of a ‘neuron’ processing unit’s output signi-
fies that the unit contributes to the motor outputs of the animat.
Other circles within the animat’s body are ‘neurons’: the larger
ones are neuron ‘cell bodies’ and the smaller ones are ‘synapses’;
the straight lines are connections joining neurons, via synapses, to
each other or to motors or sensors. Visual sensors have genetically
specified positions on the periphery of the animat’s body, and each
has a genetically-specified orientation (i.e. direction of view relative
to the body) and angle of acceptance which are indicated here by
the circle-segments emanating from the body perimeter. Different
line styles are used to help distinguish different units. At genera-
tion 0, both the pursuer and the evader have Braitenberg-Vehicle-
style architectures, with only two visual sensors each. After 200
generations, the combined effects of duplication and mutation can
be seen: it is especially clear that the pursuer’s six sensor units are
close copies of each other; only a few small mutations have occured
since the duplication events. By 1000 generations, the pursuer has
a fairly elaborate sensory morphology, with four lateral wide-field
photosensors, four frontal narrow-field sensors, and 2 rear-facing
narrow-field sensors. In contrast, the evader has four laterally
positioned wide-field sensors, without the frontal narrow-field or
rear-facing sensors that the pursuer has.

ble architectures (or selects very heavily against any im-
plausible architectures): in selecting for animats which
exhibit a particular behavior, the evolutionary process
could generate a model or models for the neural mecha-
nisms underlying that behavior, which may subsequently
drive empirical or theoretical biology: an early example



of such work is [15]. Hence, one possibility is that we
use our simulator for studying visually guided pursuit
behavior in animals. Such behavior has been studied
extensively in the biology literature. One system partic-
ularly well understood at the neural level is chasing be-
havior in house-flies (see e.g. [8]). If we attempt to evolve
pursuer animats with fly-like dynamics, which produce
fly-like behaviors, we may learn more about real flies.

Before such work can commence, it is likely to be nec-
essary to make the (visual) environment more challeng-
ing. Currently, the only object in either animats’ sensory
world i1s another animat — i.e. its opponent. This ab-
stracts away much of the difficulty of real visually-guided
pursuit and evasion. In real worlds, it can be necessary to
distinguish a moving target from a cluttered background
(the image of which may also shift due to self-motion),
or to deal with predicting the future path of a target
to adaptively cope with brief occlusions. The fact that
most of our evolved animats suffice with a small number
of photoreceptors is probably due to the simplicity of the
visual environment, and to evolve visual architectures of
interest to biologists, it will probably be necessary to
perform experiments in more visually complex worlds.

The most simple means of increasing visual complexity
is to add static obstacles into the animat-world. Of more
long-term interest (and complexity) is the possibility of
having more than two agents in the environment at any
one time. Even with only three animats, there are pos-
sibilities of exploring the effects of the system’s (prede-
termined) dominance hierarchies: they could be defined
transitively (giving a “food-chain” type scenario) or in-
transitively, forming a cycle; and it becomes possible to
study issues in attention. As the number of animats in
a trial increases, so it may be possible to study group
behaviors such as pack-hunting and coordinated evasion
(e.g. random scatter). Such group dynamics could also
allow for studying signaling and communication [16].

Furthermore, in many species of prey (i.e. evader) an-
imals, there are often three distinct phases to an en-
counter with a predator (i.e. pursuer) animal. At first
the prey will be vigilant, conserving energy. When the
predator comes closer, the prey will engage in linear flee-
ing, where it moves in a straight line at high speed, away
from the predator. Once the predator is within some
nearby distance threshold, the prey will then switch to
the third phase, involving protean jinking and dodg-
ing behavior. Given the need for energy economy in
our simulations, and game-theoretic arguments for the
optimality of mixed (i.e. random) strategies in a va-
riety of pursuit-evasion scenarios, it would be intrigu-
ing to see whether a similar three-phase evader strategy
evolves without explicit selection for such phasic strate-
gies. To keep the analysis clear, it would be necessary
to work with non-differential-steer animats, so that for-
wards speed 1s not necessarily affected by making turns.

We would then hope to see a negative correlation be-
tween pursuer-distance and evader speed (i.e. a primi-
tive form of vigilance), and a nonlinear relationship be-
tween absolute angular speed and pursuer-distance, with
a peak near to the threshold distance where dodging is
initiated, and a range of distances for which the angular
speed is approximately zero, corresponding to the dis-
tance range in which linear fleeing is exhibited.

Finally, we note that deciding whether a given be-
havior pattern can reasonably be referred to as adap-
tively unpredictable requires an operational definition of
protean behavior, preferably one that can be expressed
quantitatively. As yet, we have been unable to find an
agreed-upon rigorous quantitative definition of protean
behavior in the literature, which makes detecting pro-
teanism in our simulations all the more difficult.

4.2 Applications in FEntertainment

In the short-to-middle-term future, we believe that the
market with the biggest potential for commercial ap-
plication of our techniques is leisure and entertainment
software (rather than, e.g., autonomous mobile robots).
Co-evolutionary techniques are already being used to de-
velop sensory-motor controllers and morphologies for vir-
tual /software agents whose behavior makes them fun to
watch or interact with, or makes them easy to choreo-
graph in producing movie sequences involving groups of
complex interacting agents (e.g. [13, 14]).

To indicate the possibilities, we have produced 3D
movie sequences of the trajectories shown in Figures 2,
4,6, and 8. The movies were made by taking the trajec-
tory data shown earlier and using this to move two vir-
tual 3D agents around a 2D plane: the animats are given
3D ‘bodies’ and ‘eyes’, purely for visual effect: Figure 11
shows one frame from one of the movies. A ‘virtual cam-
era operator’ tracks the animats by moving the ‘camera’
in 3D as the chase unfolds, according to some simple
rules. Of course, whether the movie sequences are enter-
taining is a matter of subjective opinion. But we think
it is fair to say that they are a much more stimulating
way of presenting the data than the 2D trajectory plots
given here. Readers with access to the world-wide-web
can find the movies (encoded as MPEG sequences) at the
URL: http://www.cogs.susx.ac.uk/users/davec/pe.html.

4.3 Monitoring Techniques

Whether we are interested in co-evolution of pursuit and
evasion for scientific purposes or for reasons of making
fun software, there are still unresolved 1ssues in monitor-
ing and characterizing co-evolutionary dynamics. The
indications are that experiments in co-evolution of ar-
tificial autonomous agents are, in general, likely to be
highly resource-intensive (i.e take a lot of time and/or a
lot of computing power: a run of 1000 generations typi-



Figure 11: A frame from a computer-graphics pursuit-evasion
‘entertainment’ movie sequence: generation 999, same trajectory
as Figure 6, 4.1sec into the trial.

cally takes about 3 weeks on an unladen Sun Sparc 20).
As increasing magnitudes of resources are committed to
such experiments, so there will be an increasing require-
ment for robust and informative monitoring techniques.
The primary pragmatic need will be for techniques which
make it possible to determine whether the evolutionary
process 1s heading in the desired direction, or any direc-
tion at all. We discussed this problem and some tentative
solutions in [6]. Our work in this area continues.

5 Conclusions

This paper has described our methods and presented tiny
cross-sections of data from the torrent of megabytes that
a complex co-evolutionary simulation can generate. But
most of what we’ve learned from this project can’t be ex-
pressed in numbers. We started out with several beliefs
that turned out to be naive, simplistic, or simply mis-
taken; these included the conceits that (1) smart pur-
suers and evaders with ingenious nervous systems will
evolve quickly under coevolution; (2) protean (adaptively
unpredictable) behavior will emerge quickly, robustly,
and permanently in almost any pursuit-evasion simula-
tion; (3) almost any robot physics will lead to interesting
pursuit-evasion strategies; (4) co-evolutionary progress is
easy to measure; and (5) the details of evaluation func-
tions, trial initialization methods, network parameters,
morphogenesis methods, and genetic algorithm parame-
ters won’t matter much because coevolution is so robust.
We know better now, and hope that other researchers
will remain inspired by the grace and drama of real an-
imals doing pursuit and evasion, but that they will be
as cautious as we have become about the ability of com-
puter simulation to capture the evolutionary dynamics
that produced such behavior.
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