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. Abstract

Animals often chase each other about. These
pursuit-evasion contests require the continuous
- dynamical control of complex sensory-motor be-
* havior, and give rise to some of the most com-
mon and challenging co-evolutionary arms races
in nature. This paper argues for the impor-
tance and fruitfulness of studying pursuit-evasion
scenarios using evolutionary simulation methods.
We first review the biological ubiquity of pursuit-
evasion contests and the protean (adaptively un-
predictable) behavior that often evolves in evasion
strategies (e.g. when prey zig-zag to evade preda-
tors). We then review the differential game the-
‘ory relevant to analyzing pursuit-evasion games,
including the proven optimality of mized strate-
gies (corresponding to protean behavior) in many
such games. Previous simulation work on evolving
pursuit-evasion tactics is also reviewed. Following
this, we describe results from some initial experi-
ments that extend previous work in evolutionary
robotics to explore the co-evolution of pursuit and
evasion tactics in populations of simulated robots.
We conclude with some possible scientific impli-
cations and engineering applications.

1 Introduction

Contests of pursuit and evasion are among the most com-
mon, challenging, and important adaptive problems that
confront mobile animals, and are some of the most im-
portant potential applications for robots and other ar-
tificial autonomous agents. In a typical contest of this
sort, a predator chases a prey animal around until the
prey is eaten or the predator gives up. More symmet-
rically, two members of the same species may fight over
a territory or resource, alternating between attack and
defense tactics analogous to pursuit and evasion tactics.
Pursuit and evasion behaviors, like attack and defense
behaviors, tend to co-evolve against one another, result-
ing in some of the most intense and sustained evolution-
ary arms races in nature. Although pursuit-evasion (p-
E) contests have been relatively neglected in research on
the simulation of adaptive behavior, they have five major
features that render them interesting and relevant.

First, pursuit and evasion strategies require highly ro-
bust forms of adaptive behavior and have particularly
important fitness consequences. Animals that pursue or
evade must maintain complex sensory-motor coordina-
tion with respect to both a physical environment and a
hostile animate opponent. Pursuit-evasion contests also
require continuous, real-time, dynamical control, in the
face of an opponent that will ruthlessly exploit any de-
lay, uncertainty, or error. Natural or artificial behavior-
control systems that are slow, brittle, easily confused,
or error-prone do not survive long in P-E scenarios. For -
these reasons, traditional artificial intelligence methods
may prove particularly poor as models of P-E behav-
iors, and newer reactive, behavior-based, bottom-up ap-
proaches (e.g. [32]) may prove particularly apt.

Second, pursuit and evasion strategies evolve against
one another in an ongoing, open-ended, frequency-
dependent way, so P-E contests often give rise to co-
evolution within or between species. Because P-E sce-
narios may be the simplest and most common cases of
behavioral co-evolution, their investigation may illumi-
nate behavioral arms races in general (see [23]). Such
sustained co-evolution reinforces all of the challenges dis-
cussed in the previous paragraph: temporary adaptive
advantage is continually eroded under co-evolution as
new tactics arise. Co-evolution probably drives the evo-
Iution of both special perceptual capacities to entrain,
track, and predict animate motion, and special motor
capacities to generate complex, robust, unpredictable be-
havior [40]. Understanding both motion perception and
motor control may thus depend on appreciating the role
of P-E contests in behavioral evolution.

Third, P-E contests have received serious attention
from at least three scientific disciplines: behavioral bi-
ology, neuroethology, and game theory. Animal behav-
ior studies have revealed the ubiquity and importance of
P-E tactics, anti-predator behaviors, and fighting skills
[14]. The centrality of such behaviors is revealed by the
fact that P-E games are the most common form of ani-
mal play behavior; such play facilitates learning sensory-
motor coordination through “developmental arms races”
between play-mates. Neuroethology (e.g. [6]) has spent
much effort understanding neural systems for pursuit
(“approach”) and evasion (“avoidance”), including: ex-
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plorations of specific circuits for rapid startle and es-
cape behaviors (e.g. [7]); the role of the (very fast) tecto-
spinal pathway in mediating pursuit behaviors in ver-
tebrate predators such as salamanders, frogs, cats, and
owls (e.g. [2]); and the specific attunement of sensory
cells to patterns of animate motion relevant to pursuit
and evasion (e.g. [3]). Game theorists have also stud-
ied P-E contests intensely for several decades, because
of their importance in tactical air combat (e.g. telling
pilots how to evade guided missiles) and other military
applications (see [55]). “Differential game theory” [27]
has developed a vocabulary for analyzing the structure
and complexity of P-E games, and a number of formal
results concerning optimal strategies for particular p-E
games. We review the relevant animal behavior studies
and game theory at length in the next sections.

Fourth, P-E contests are of considerable theoretical in-
terest because they give rise to several unique behav-
ioral phenomena. They are the simplest situations that
can favor “protean” (adaptively unpredictable) behavior,
as when prey animals zig-zag unpredictably to escape
predators (see e.g. [8, 14]). Further, because effective
pursuit may often require prediction and ‘mind-reading’,
while effective evasion may require the use of unpre-
dictable or deceptive tactics [14], such contests raise is-
sues of signaling, communication, and tactical deception
[38], and may provide a natural bridge from the evolu-
tion of basic sensory-motor control to the evolution of
social psychology and ‘Machiavellian intelligence’ [5, 38].

Fifth, the study of P-E behaviors has many scientific
implications and practical applications. A better under-
standing of the evolutionary, behavioral, and cognitive
dynamics of P-E contests would have wide implications
for animal behavior, neuroethology, comparative psy-
chology, and evolutionary psychology [40]. Better meth-
ods for evolving P-E behaviors would have many appli-
cations in robotics, video games, virtual environments,
and any other technology where real or simulated mobile
agents come into behavioral conflict with other agents.

Because P-E contests are a major new area of investiga-
tion for simulation of adaptive behavior, which we hope
will excite much further research, this paper lays out the
biological and game-theoretic foundations in some detail:
this is essentially a position paper. We are currently con-
ducting experiments that extend previous work in evo-
lutionary robotics [10] to investigate: (1) whether co-
evolution between simulated robots engaged in P-E con-
tests can lead to the more and more complex pursuit and
evasion tactics over generations; (2) whether the use of
continuous recurrent neural networks as control systems
allows the emergence of more interesting and dynamic
perceptual, predictive, pursuit and evasion abilities; and
(3) whether the incorporation of random-activation units
in the control system allows the evolution of adaptively
unpredictable tactics. Section 5 discusses some prelim-

inary results. For a longer version of this paper, with
a more extensive bibliography, see [39]. For a more de-
tailed discussion of our methods and results, see [11].

2 Biological foundations

2.1 The generality of pursuit-evasion problems

We use the term “fitness affordances” (FAs) to denote
things that have particular statistically expected conge-
quences for the fitness (survival or reproduction) of or-
ganisms of a particular age, sex, condition, and species
[37, 40, 50]. Positive FAs such as food, mates, shel-
ter, or offspring have a positive expected effect on the
replication of one’s genes; negative FAs such as poisons,
predators, parasites, and physical dangers have a nega-
tive expected effect. FAs are objective features of the
environment insofar as their potential fitness effects ex-
ist regardless of whether the organism facing them knows
or cares of their existence, but FAs are relational inso-
far as their biological significance exists only in relation
to organisms with particular modes of survival and re-
production (e.g. what is food to one species is poison to
another in a perfectly objective and yet perfectly rela-
tional way). Most FAs are spatially localized (at some
scale), and only impose their fitness effects on organisms
immediately present. _

Mobility allows animals to actively approach and ex-
ploit positive FAs, and to actively avoid negative FAs.
But very often, FAs are themselves mobile animals with
their own fitness interests, which may turn the prob-
lem of approach into a problem of pursuit, or the prob-
lem of avoidance into one of evasion. Whenever there
are recognized conflicts of interest over fitness effects be-
tween mobile animals, we may predict manifest conflicts
of movement. If the conflict of movement is sustained
across some expanse of space and time, there is a P-E
conflict. Thus, interactions between two mobile agents
that have conflicting expected fitness effects creates a
pursuit problem for one agent and an evasion problem
for the other.

The above scenario, where the roles of pursuer and
evader are pre-determined by the FA relationships, and
fixed for the duration of the interaction, could be called
an asymmetric P-E contest. More symmetric sorts of p-
E contests can unfold when similar animals both seek
access to a positive FA, such as a territory or resource,
that is worth more if enjoyed alone. Animals of the same
species often fight over food, nest sites, and mates. In
symmetric contests, the roles of pursuer and evader can
switch back and forth rapidly as the animals take offen-
sive or defensive roles. In both symmetric and asymmet-
ric contests, the immediate behavioral conflict can result
in a co-evolutionary arms race between pursuit and eva-
sion tactics, if the agent-types in question encounter each
another with reasonable frequency and with significantly




opposed fitness consequences across generations.

2.2  Biological observations

Pursuit is fairly simple: animals are usually observed to
move towards the remembered, observed, or predicted lo-
cation of the target. Evasion is more complex. For exam-
ple, animal escape behavior in asymmetric P-E contests
generally breaks down into three phases: (1) directional
fleeing if a predator (or other negative, mobile FA) is
threatening but still distant; (2) erratic zig-zagging if the
predator begins catching up; and (3) convulsive ‘death-
throes’ if caught. Directional fleeing is about as simple as
directional chasing, but the last two tactics, zig-zagging
and convulsing, are examples of a more interesting type:
protean behavior.

‘Animals generally evolve perceptual and cognitive ca-
pacities to entrain, track, and predict the movements of
other biologically-relevant animals such as prey, preda-
tors, and potential mates [40]. Such predictive abilities
mean that unpredictable behavior will inevitably be fa-
vored in many natural P-E situations. For example, if a
rabbit fleeing from a fox always chose the single appar-
+ ently shortest escape route, the very consistency of its
behavior would make its escape route more predictable
to the fox, its body more likely to be eaten, its genes
less likely to replicate, and its fitness lower. Predictabil-
ity is punished by hostile animals capable of prediction.
This is the basic logic behind the theory of protean be-
havior: the effectiveness of almost any behavioral tactic
can be enhanced by endowing it with characteristics that
cannot be predicted by an evolutionary opponent [14].
An arms race between perceptual capacities for predict-
ing animate motion, and motor capacities for generating
protean behavior, will generally result from evolutionar-
ily recurring P-E contests [40].

Along with directional fleeing, protean escape behav-
iors are probably the most widespread and successful of
all behavioral anti-predator tactics, being used by virtu-
ally all mobile animals on land, under water, and in the
air. Driver and Humphries [14] review examples from
hundreds of species, including humans. Predators can
also exploit unpredictability to confuse prey, as when
weasels do “crazy dances” to baffle the voles they stalk.

Even if erratic zig-zagging fails, another form of pro-
teanism, convulsive behavior, may succeed. Sudden, un-
predictable, vigorous “death-throes”, alternating with
puzzling passivity (“playing dead”) is often effective
at allowing prey to escape from predators [14]. Adap-
tive convulsions can also occur in more abstract state-
spaces, as when cuttlefish and octopi undergo rapid color
changes to defeat the search images (perceptual expec-
tations) of their predators. Additional confusion effects
may arise from group flocking and mobbing behaviors
that include unpredictable movements, complex motion
dynamics, and confusing coloration (zebra stripes or
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shiny scales on fish). Unpredictability can also be ex-
ploited by divergence between individuals, as when an-
imals within a species evolve “aspect diversity” (poly-
morphic coloration or behavior) through “apostatic se-
lection” that favors low-frequency traits (e.g. because
predators’ use of search images penalizes common ap-
pearances). Indeed, apostatic selection may be a general
feature of P-E arms races: novel and unexpected tactics
may be favored at a variety of levels.

Co-evolution itself can be viewed as a P-E contest, op-
erating between lineages rather than between individu-
als. From this perspective, sexual recombination makes
sense as a protean strategy which unpredictably mixes
up genes so as to “confuse” pathogens [22]. Indeed, this
proteanism argument is one of the leading explanations
for the the evolution of sex [45]. Despite proteanism’s im-
portance, it has been long overlooked in biology, because
complex order rather than useful chaos was assumed to
be the defining feature of Darwinian adaptations.

3 Game-theoretic foundations

3.1 Differential pursuit-evasion game theory

Game theory [44] is concerned with the formal analysis of
situations called “games” where: (1) players can choose
different strategies that determine their actions under
particular conditions; (2) conditions and outcomes un-
fold through the interactions of the players’ strategies;
and (3) players have preferences among outcomes, i.e.
payoffs exist. In brief, players are agents that can make
choices, implement strategies, and receive payoffs.
Traditional game theory focused on games with dis-
crete moves (e.g. chess), but in the 1950s, Isaacs (e.g.
[27]) wondered whether game theory could be used to
model P-E situations such as aerial combat, where moves
unfold continuously over time. Isaacs had two basic
insights. First, P-E contests do require game theory
rather than simple optimality theory, because the opti-
mal pursuit strategy for one player (e.g. a guided missile)
depends on the evasion strategy adopted by the other
player (e.g. an aircraft), and vice-versa. This chicken-
and-egg problem is precisely what game theory is good at
analyzing. Second, the continuous nature of P-E contests
can be modeled using differential equations that spec-
ify how state conditions (such as player positions and
velocities) change incrementally as a function of play-
ers’ strategies and previous state conditions: pursuit and
evasion moves become continuous trajectories through a
state-space. Isaacs [27] developed the “Tenet of Tran-
sition” which specifies that players must optimize (find
the minimax solution for) the transitions between states
leading towards a goal-state, which can be represented as
optimizing the temporal derivatives of the relevant state
variables. For example, pursuers try to minimize the
time until capture and evaders try to maximize it. Ap-
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plying the tenet of transition, pursuers at each moment
in time should try to maximize the rate of their instanta-
neous approach towards the capture-state, and evaders
should try to minimize it. If a solvable set of differen-
tial equations can be written that specify the continuous
effect of strategies on state-conditions, then the optimal
pursuit and evasion strategies can be found by applying
the tenet of transition. Isaacs’s ideas have proven enor-
mously fruitful: Rodin’s [46] recent bibliography of P-E
differential game theory contains about 1200 entries, and
theoretical results are often used in practical situations
such as design of military aircraft control systems.

Differential P-E games are defined by a set of controls
(what each player can do), a set of dynamics (that maps
from the control variables onto the state variables of the
game, and from state variables at one moment in time to
the next moment), and a set of termination conditions
(state conditions that determine when successful capture
or evasion happens). For example, in a classic case an-
alyzed by Berkovitz [4], a pursuer and an evader move
with equal and constant speed in a plane, and control
the direction of their velocity vector (which thus becomes
their control variable). These two velocity vectors give
rise to a system of first-order differential state equations
that determine how the players move over time. The pur-
suer wants to minimize time to capture the evader and
the evader wants to maximize time until capture, with
capture defined as proximity within some small distance.
Both players know the present state of the game (e.g.
both of their positions and velocity vectors) but at each
time-point they make separate and simultaneous deci-
sions about what to do next. The available strategies
are therefore functions that map from current states of
the game (i.e. the positions and velocity vectors of both
players) onto velocity-vector decisions about what direc-
tion to move next. In all differential games, strategies
determine trajectories through the relevant state-space;
in P-E games, strategies determine trajectories through
physical space. From each player’s perspective, the game
becomes a problem of optimal spatio-temporal control
with respect to the opponent and the environment. In-
deed, control theory can be viewed largely as the solution
of one-player differential games [28]; differential game
theory addresses the more complex multi-player cases.

In classic “asymmetric’ games (e.g. missile vs. air-
craft), the roles of pursuer and evader are pre-determined
and fixed. But in “symmetric” games (e.g. aircraft vs.
aircraft), both players can collect payoffs for successful
pursuit and successful evasion. Symmetric P-E contests
have been analyzed as “two-target games” [18, 36]. The
symmetric contests in our initial experiments (see [11])
resembled the sort of two-target aerial combat games
that have been subject to intense game-theoretical anal-
ysis for several decades (see [21] for review).

9.2 The optimality of mized strategies

The key to formal analysis in game theory is for games to
be reduced from descriptive form (e.g. rules and heuris-
tics) or “extensive form” (i.e. decision-tree form) to “nor-
mal form” (i.e. a joint payoff matrix that lists game out-
comes given all possible strategies for all players). Some
games in normal form have “minimax solutions” (a.k.a.
“saddle points”) that minimize each player’s expected
loss regardless of what the opponent does to maximize
their expected gain; minimax solutions, if they exist, are
jointly optimal for rational players. In games of perfect
information, players are precisely and continuously aware
of all moves made by other players, so that deception,
confusion, and uncertainty are impossible. All games
of perfect information have one or more saddle points
corresponding to “pure” deterministic optimal strategies
(though finding them may often be difficult, as in chess).

However, games of imperfect information (e.g. games
where deception is possible) may have multiple saddle
points or no saddle points. In such cases, “mixed strate-
gies” (probability distributions across pure strategies)
may be optimal. Perhaps the most important result
from [44] was that every two-player, zero-sum game of
incomplete information with multiple saddle points has
an optimal strategy that is mixed rather than pure:

“One important consideration for a player in such
a game is to protect himself against having his
intentions found out by his opponent. "Playing
several different strategies at random, so that only
their probabilities are determined, is an effective
way to achieve a degree of such protection. By
this device the opponent cannot possibly find out
what the player’s strategy is going to be, since
the player does mot know it himself. Ignorance
is obviously a good safeguard against disclosing
information directly or indirectly.” [44, p.146]

The logic of mixed strategies is simple. If a player’s

choice sometimes remains unknown to others after the -

move is made, the game is one of imperfect information.
This can result from the move being hidden,\or the other
players’ sensors being insufficient to register all moves
with complete accuracy. Typically, games lose their sad-
dle points when they are no longer games of perfect in-
formation, such that the first player’s minimax solution
does not correspond to the second player’s minimax so-
lution. For example, the popular children’s game Rock,
Paper, Scissors involves a circular pattern of dominance
among the pure strategies (Rock beats Scissors, Scissors
cut Paper, Paper smothers Rock), so there is no sad-
dle point, and one’s optimal (minimax) strategy against
a rational opponent is to choose each move with one-
third probability. In general, mixed strategies random-
ize moves to confuse opponents and keep them guessing.
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(But the task of determining the optimal mixed strat-
egy is usually very difficult for games with many pure
strategies and complex interactions.)

Because many P-E games are games of incomplete in-
formation with multiple saddle points, mixed strategies
have often proven useful in such games. Mixed strategies
are optimal for a P-E game with rectilinear movement
on a planar grid [15]. In some more complex continu-
ous cases, the optimal strategies for both pursuer and
evader are also mixed. Important recent work in this
area has been by Forte and Shinar (e.g. [16, 49]); they
showed that in aerial combat scenarios, mixed strategies
yielded much better performance than any previously
known guidance law, and did so for both pursuers and
evaders. Such game-theoretic results support the pro-
tean behavior hypothesis of Driver and Humphries [14]
that erratic zig-zagging by animals is truly stochastic be-
~ havior that derives its utility from its unpredictability.

We might expect then that in any P-E game with incom-
plete information and complex dynamics; unpredictable
pursuit and evasion strategies will evolve. :
Evolutionary game theory [33] has also recognized the
optimality of mixed strategies in many contests between
"animals. Animals can be considered players in the game-
theoretic sense because they make choices, implement
behavioral strategies, and receive fitness payoffs contin-
gent on their interactions with other animals’ strategies.
Mixed strategies can be implemented as behavioral poly-
morphisms across individuals in a population or as pro-
tean behavior within each individual. However, evolu-
tionary game theory has focused mostly on single-step
games (such as sex-ratio determination or the Hawk-
Dove game: see [33]) and discrete-step games (such as
the iterated prisoner’s dilemma). The literature on dif-
ferential P-E games has been strangely overlooked de-
spite its obvious relevance to predator-prey interactions
~and territorial fights, so the importance of protean eva-
sion behavior has been neglected. Dynamic program-
ming methods (e.g.” [25, 26]) may prove more useful in
analyzing P-E contests, since they can optimize stochas-
tic dynamic strategies, even in two-player games (e.g.
[9]). However, such methods require the specification of
a fairly well-defined strategy set, and Miller [41] has ar-
gued that genetic algorithms can evolve strategies in a
more open-ended fashion than dynamic programming.
Evolutionary game theory and dynamic programming
should prove useful adjuncts to differential game the-
ory as ways of analyzing simple P-E conflicts, but the
next section suggests that simulated evolution may be
required to deal with complex cases.

3.8 Reasons to simulate pursuit-evasion games

Games are characterized by various dimensions of com-
plexity: (1) the number of players, ranging from one-
player cases (covered by control theory) to classic two-
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player cases to more difficult multi-player cases; (2) the
number of moves, ranging from “static” games of one
discrete move per player (e.g. Rock, Paper, Scissors)
to games with multiple discrete moves per player (e.g.
chess), to differential games with continuous moves (e.g.
air combat); (3) the payoff structure, with zero-sum
games usually simpler than non-zero-sum games; (4) the
information structure, with games of complete informa-
tion much simpler than games of incomplete information.
Moreover, in differential games with continuous dynam-
ics, the complexity and noisiness of the dynamics has a
major influence on the tractability of the game. Any-
thing that complicates the differential state equations
complicates the game analysis. Finally, formal applica-
tion of game theory requires the complete specification
of a strategy space. Such a complete specification may
not be possible if the strategies are emergent proper-
ties of human heuristics, animal brains, or evolved robot
control systems. These problems suggest that differen-
tial P-E games are difficult to analyze even under the
best circumstances, and that the introduction of realistic
complexity renders most of them formally intractable.

To avoid these complexities, differential game theory
usually assumes that the P-E game is one of perfect
information between two players with fixed and pre-
determined roles (one “pursuer” and one “evader”), de-
terministic dynamics and constant speeds, and a zero-
sum payoff structure. Mathematically adept researchers
can relax ome or two of these assumptions at a time
to derive results for special and simplified cases, but
relaxing all the assumptions at once makes the game
hopelessly complex. Some recent work attempts to an-
alyze more difficult asymmetric and symmetric games
with noise-corrupted environments [54], uncertain envi-
ronments [13], or uncertain dynamics [17]. Yet even with
bounded uncertainties in dynamics, the classical game-
theoretic concepts of optimality, value, and saddle point
may be irrelevant [17]. P-E games that cannot be re-
duced to differential state-space equations cannot be an-
alyzed using the traditional methods of differential game
theory. For example, without a linear and determinis-
tic mapping from control to state variables (e.g. from a
player’s sensors to its effectors), it is impossible to con-
struct tractable differential equations that relate player
strategies directly to changes in the game’s state-space.

Another important assumption, very rarely mentioned
in game theory, is that strategies can be implemented
instantaneously, without time-lags, computational costs,
or speed-accuracy trade-offs. That is, decision dynamics
are assumed to be much faster than behavioral dynamics.
For real animals and robots, this assumption is unreal-
istic. Indeed, the basic assumption in game theory that
unpredictability is only useful given incomplete infor-
mation assumes that decision-making happens so much
faster than action, that the dynamics of information-
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processing are irrelevant to the dynamics of action. But
if we view both cognition and action as dynamical pro-
cesses operating on similar time scales [40], then the
utility of unpredictability becomes more apparent. The
terms “perfect” and “imperfect” information conflate the
objective information structure of the game (e.g. the
state-information available in the world) with the sensory
and information-processing capacities of the players. If
the latter are limited, then confusion, uncertainty, decep-
tion, and protean behavior may prove relevant even if the
objective information structure of the game is “perfect”.
In recognition of these problems, some game theorists
have recently shifted to numerical and simulation meth-
ods to derive near-optimal strategies for more complex
P-E games (e.g. [29, 47]). For example, [47] used ar-
tificial intelligence (AI) methods to simulate players in
an air combat maneuvering scenario. But such methods
for controlling autonomous agents tend to become hope-
lessly slow as the dynamics of agents and environments
become more complex and noisy. We need simulation
methods that yield reactive, robust, dynamic P-E strate-
gies, rather than slow, brittle, hand-designed Al systems.
Differential game theory provides a framework for de-
scribing the important features of P-E contests, and a
set of normative results concerning optimal strategies in
simple cases. However, it cannot generally provide opti-
mal strategies for realistically complex P-E problems, nor
can it show how strategies can be implemented in a real
control system subject to limited sensory capacities, sen-
sory and motor noise, component failure, and constraints
on processing speed and accuracy. Evolutionary simula-
tion methods can fulfill these goals and can complement
game-theoretic approaches, because adaptive P-E strate-
gies can be evolved in contest scenarios that defy formal
analysis. Others have recognized this, and so we next
review previous simulation work related to P-E issues.

4 Review of Related Simulation Work

Themes of pursuit and evasion are implicit in much of the
recent work in artificial life and simulation of adaptive
behavior. Classic problems of obstacle avoidance and of
foraging and navigation can be viewed as degenerate spe-
cial cases of evasion and pursuit, respectively, with the
“opponents” consisting of inanimate, non-moving obsta-
cles, food items, or other goal objects. Much of the work
on simulation of collective behavior involves issues of dy-
namical interaction with other agents that may be sim-
ilar to the those arising in P-E contests. For example,
the cooperative behaviors of following, flocking, and ag-
gregation are similar to pursuit behaviors; others such
as disperson and collision-avoidance are more similar to
evasion behaviors. (But note that selection for coopera-
tion rarely favors deception or protean behavior.)
Previous simulation work has examined the origins
and effects of P-E tactics with neither player evolving

or with one player evolving; these will be reviey
order (we are not aware of any prior work wity,
players co-evolving.) Given very simple, fixed rules f
individual movement, Schmieder 48] examined the diofr
ferent P-E dynamics that result when a number of sim:
ulated males and females are attracted or repulsed |
one another with varying strengths, and with VaIyiny
degrees of mutual knowledge about one another’s mOVeg_
ments. Some artificial life simulations have Successfully
used pre-programmed predators that impose selectiop for
simple evasion behaviors (e.g. [1, 51]).

ed iy
both

Grefenstette’s [19, 20] SAMUEL system, resembling ,
classifier system, evolved robust rule-based strategies fo,
simulated agents with noisy, coarse-grained sensors an(
effectors, including both effective evasion rules given one
or two pre-programmed pursuers (in the ‘predator-prey’
problem), and effective pursuit rules given a randomly
moving evader (in the ‘cat-and-mouse’ problem). How.
ever, SAMUEL uses high-level sensory input (e.g. direct
heading, bearing, speed, and range information), sym.-
bolic condition-action rules operating in discrete time.-
slices (e.g. 2 to 20 decisions per contest), and fairly
domain-specific genetic operators (such as Lamarckian
rule deletion, generalization, and specialization).

Koza’s [30, 31] genetic programming work includes the
widest array of P-E simulations. His Pac-Man scenario
[31] required both evasion (of pre-programmed “mon-
sters”) and pursuit (of sluggishly moving “fruit”); con-
trol systems evolved through genetic programming that
were capable of prioritizing these activities appropriately.
Some evolved Pac-Man controllers were skillful enough to
eat the monsters after eating a special “pill” that made
the monsters vulnerable, so to some extent the roles or
pursuer and evader could be switched in this scenario.
Koza [31] also investigated the evolution of P-E strategies
in Isaacs’ [27] “squad car game”, where a police squad
car pursues a slower pedestrian evader on a discrete grid.
Most relevantly, Koza [30] used genetic programming to
evolve LISP S-expression controllers for both players in a
differential P-E game. His game had pre-determined and
fixed roles for pursuer and evader, constant speeds for
both agents, and perfect information. Agents were ran-
domly placed in a planar world, controlled their direc-
tions (velocity vectors) based on simple inputs concern-
ing the current heading of the opponent, and received
fitness payoffs for effective pursuit or evasion. This game
has a single optimal pursuit strategy (move directly to-
wards the evader) and a single optimal evasion strategy
(move directly away from the pursuer). Given an opti-
mal evader as the “environment”, genetic programming
was successful in evolving a near-optimal pursuer within
a few generations (e.g. 51 generations of 500 individuals
each); likewise, near-optimal evaders evolved given fixed
optimal pursuers as the environment. However, Koza’s
P-E game was very simple: it required mapping a sin-




gle input (current angle of opponent) onto a single out-
put (direction to move in), given perfect information and
trivial movement dynamics, and it had a known optimal
solution from differential game theory. Co-evolution be-
tween pursuer and evader did not occur. Nevertheless,
Koza’s work represents an important fore-runner and in-
spiration for our research. ‘
Aside from explicit P-E research, some simulated
evolution has demonstrated the adaptiveness of mixed
strategies and protean behavior. Koza [31] used genetic
programming to evolve random-number generation pro-
grams under “entropy-driven evolution”; this direct se-
Jection for randomness is analogous to the indirect se-
lection for unpredictable evasion that occurs in P-E con-
tests. Other simulation work has shown the utility of
co-evolution in evolving strategies for game-like interac-
tions. Work by Hillis [23] on the co-evolution of sorting
© strategies and test sets can be viewed as an abstract ver-
sion of a one-play P-E contest, in which the sorting strate-
gies ‘pursue’ optimal sorts while the test sets ‘evade’ the
strengths of particular sorting algorithms. Co-evolution
. has also been used successfully in Holland’s [24] EcHO
system, Koza’s [30, 31] genetic programming research,

.and J. H. Miller’s [43] work on the iterated prisoner’s
dilemma. This previous work on evolving pursuit and
evasion strategies, together with Koza’s demonstration of
entropy-driven evolution through selection for random-
ness, and demonstrations of co-evolution by Hillis and
others, gave us hope that a co-evolutionary P-E scenario
could lead to the evolution of protean behaviors.

5 Experimental Methods and Results

In previous work on evolutionary robotics [10], Cliff et al.
have used simulated evolution through natural selection
to design sensory and control systems capable of guiding
_ simulated robots to perform simple homing and guidance
tasks. Here, as a.natural extension to this work, we
increase the number of agents in the world from one to
two, and set up a fitness function that rewards hostile
pursuit and effective evasion.

To limit computational costs, the full 3-D simulation
system employed in [10] was simplified to yield a 2-D
‘fatland’ simulation; nevertheless, both time and space
were still modeled as continuous values. Visual sensing
was modeled using computer graphics techniques, with
visual sensors (e.g. number, placement, and angular sen-
sitivities of ‘eyes’) evolving under genetic control. All
agents had the same motor system (2 wheels) and kine-
matics, which were modeled as differential-drive steering
systems. The faster an agent moved, the larger its mini-
murm turning radius became. All agents had the same vi-
sual appearance with distinguishable head and tail ends,
so an agent could in principle detect whether its oppo-
nent was oriented towards or away from it.

Since P-E games unfold in continuous space and time

v . 1 i
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as an interplay between each agent’s continuous dynam-
ical trajectory, rather than as a series of discrete, al-
ternating moves, we preferred to use agent control sys-
tems based on dynamical, recurrent neural networks,
rather than controllers with discrete condition-action
rules, such as classifier systems (e.g. [52]), Lisp S-
expressions [30], or deterministic finite-state automata
[12]. Our agents’ control systems are genetically-
specified continuous-time noisy recurrent neural net-
works with heterogeneous time-constants, modeled us-
ing numerical approximation techniques with the same
very short time-slice interval (At) as was used for resolv-
ing sensor and motor responses. The networks can, to a
good approximation, generate continuous output based
on continuous input, and have intrinsic dynamics that
can be used to guide complex adaptive behavior.

In each P-E contest, a pair of individuals are placed at
random on the planar surface, each moves as directed by
its evolved control system based on its visual input, and
each amasses fitness points for effective pursuit and/or
effective evasion, depending on the fitness function. Be-
cause contest outcomes are noisy, each individual takes
part in a number of contests (typically 8 or 16) to de-
termine overall fitness. Elitist rank-based reproduction,
with crossover and mutation, are used to form the next
generation.

We have implemented two types of simulation. In
inter-population asymmetric P-E co-evolution, a ‘pur-
suer’ population is selected for pursuit ability (like a
predator species), and co-evolves against a second, re-
productively separate ‘evader’ population, which is se-
lected for evasion ability (like a prey species). In intra-
population symmetric P-E competition, individuals in a
single population compete against each other and are se-
lected for both pursuit and evasion abilities using a single
zero-sum evaluation function. The following discussion
considers this latter case, which we expected to be easier,
but which proved quite tricky.

We found that many of our intra-population zero-sum
evaluation functions, which were designed to reward both
pursuit and evasion capacities in the same individual,
resulted in pseudo-cooperative solutions, such as: (1)
both competitors turning away from each other and run-
ning off at full speed; (2) both competitors turning to
face each other and then shutting down all motor ac-
tivities, resulting in an indefinite face-off; or (3) both
competitors turning to face each other and then acceler-
ating to a high-speed collision. In most evaluation funec-
tions we have examined, the first two outcomes appear
to be strong attractors, and the second two are perhaps
evolutionarily stable strategies. These outcomes, and
the difficulty of constructing fitness functions for intra-
population co-evolution, are discussed further in [11].

In co-evolution based on zero-sum contests within pop-
ulations, there are further problems in measuring real
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performance increases in the population, because aver-
age population fitness will necessarily hover around zero.
Figure 1 (solid line) shows the fitness score of the best
individual (highest average score over 16 trials) in the
population at the end of each of 300 generations. These
results do not appear promising: despite selecting for
higher scores (i.e. maximizing), fitness rapidly falls to-
wards zero and stays there for the duration of the exper-
iment. However, when the best individual from each gen-
eration is tested against the best individual in the orig-
inal random population of generation 0 (Fig. 1, broken
line), it is clear that improvement has occurred. This im-
provement rapidly approaches an asymptote (within 10
generations), and is largely due to genetic convergence
(this experiment was performed with a high selection
pressure and a relatively low mutation rate). Despite
the apparent asymptote, scores vs. the best individual
from generation 300 (Fig. 1, dotted line) indicate that
beneficial mutations continue to occur: e.g. at genera-
tions 70 and 202; after each such mutation, performance
reaches a significantly higher plateau; see [11] for further
details.

By analogy, ancient predators may have caught an-
cient herbivores only half the time, and modern cheetahs
may catch modern gazelles only half the time, but mod-
ern cheetahs would catch ancient herbivores very effi-

. ciently. To register progress in zero-sum co-evolutionary
situations, we need to explicitly test individuals against
their ancestors (or the ancestors of their competitors).

6 Conclusions

Pursuit and evasion behaviors are common because con-
flicts of interest over approach and avoidance are com-
mon, and they are difficult because dynamic, stochastic,
continuous-space, continuous-time, zero-sum games are
difficult. This paper has argued that the exploration
of P-E contests is the next logical step in the simulated
evolution of adaptive behavior. Such contests introduce
many complexities, such as co-evolution, protean behav-
tor, dynamical behavior, and collective movement pat-
terns. We conclude by examining the engineering and
scientific benefits of pursuing rather than evading these
complexities.

Many traditional robot control tasks are degenerate
special cases of P-E problems: collision-avoidance is eva-
sion of non-moving obstacles, goal-directed navigation
and homing behavior are pursuit of a non-moving tar-
get region, and grasping can be pursuit of a non-moving
target object. Clearly, the avoidance, pursuit, or ma-
nipulation of active mobile agents radically increases the
difficulty of such tasks, and their robust solution may re-
quire co-evolutionary design methods, where robot con-
trol systems evolve against pursuer or evader agents.
Even where a robot’s operating environment is expected
to contain only static or passively moving objects, co-
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F igure 1: Scores from zero-sum P-E intra-population co-

evolution. Solid line: score of best individual in generation when
tested against a random selection of other individuals in that gen-
eration (peak value is 1.16 at generation 1). Broken line: score of
best individual in generation when tested against best individual
from generation 0. Dotted line: score of best individual in gener-
ation when tested against best individual in generation 300. All
points are averages of 16 trials.

evolution -of grasping and movement tactics against an-
imate opponents might increase the robustness, speed,
smoothness, and generality of control systems, because
the opponents would evolve to exploit any instabilities
or weaknesses in the control system. For example, a
legged robot that is harried by a hostile predator that
keeps trying to trip it up will probably evolve more ro-
bust walking abilities than one that merely clambers cver
passive obstacles. Any real robot that operates in public
spaces that contain potentially hostile (or merely clumsy
and curious) agents, such as children, dogs, or Luddites,
must have escape and evasion abilities at least as effec-
tive as those of the average house pet. The co-evolution
of evasion tactics through interaction with simulated an-
imal, human or vehicle pursuers may help to solve this
potentially catastrophi¢: problem. Pursuit and evasion
capacities have other obvious applications in computer
animation, video games, and virtual environments, aside
from less savory military uses.

The scientific benefits of a better understanding of pur-
suit and evasion would extend to game theory, animal bi-
ology, evolutionary psychology, and neuroethology. Im-
plications also arise for our understanding of the gen-
eral relationship between agents and environments. For
those seeking a general theory of environmental complex-
ity (e.g. [53, 50]), the addition of animate agents capa-
ble of unpredictable pursuit and evasion in the environ-




ment represents. a significant conceptual challenge. For
example, an environment that contains creatures with
continuous-time dynamical recurrent networks as their
control systems would be difficult to model as an envi-
ronmental finite state machine, as proposed in [53]. As
in sexual selection [37, 42] and other forms of “psycho-
logical selection” [38, 40], P-E contests break down the
distinction between environment complexity and agent
complexity, because agents become the most important
selective forces in each other’s environments.
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