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We close by noting that the purposes of scientific theory are to
organize knowledge, generate falsifiable hypotheses, and pre-
dict new phenomena. Although such ideas as optimality have
played a critical role in theory construction, they confuse the
process of theory evaluation. What matters in evaluation is how
well quantitative models generate an understanding of pro-
cesses and outcomes. Within this perspective, mathematical
equations can potentially predict behavior such as probability
matching (e.g., Heyman 1988) and environmental sampling
(e-g.» Stephens 1987), not whether errors determine optimality.
Questions about the optimality of such behavior are not falsifia-
ble, are outside the model’s domain, and only promote loose
speculation and circular argument. We hope that next-genera-
tion models will be sufficiently productive/predictive that re-
searchers will focus on developmental issues to the exclusion of
definitional controversies.

NOTE
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Limits to stochastic dynamic programming
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Clark provides a useful description of the technique of dynamic
programming and outlines its main advantages. His major worry
concerns the complexity of models. He warns (sect. 10) of the
temptation to include excessive detail and how this can lead to
the sort of pointless heavyweight exercises that capsized and
sank systems ecology. We think it is important to understand
the real problem of producing complex models.

In his conclusion, Clark points out that the standard simple
optimisation models of behavioral ecology have failed to stand
up to quantitative tests, although they have provided qualitative
insights. The real success of such simple models as the optimal
diet model, the marginal value theorem and the ideal free
distribution was that they changed the perspective of a cohort of
ecologists so that they studied animals in a different way. This
led directly to the recognition of the importance of components
such as misidentification (Hughes 1979), kleptoparasitism
(Thompson 1983), variation in prey quality (Durrell & Goss-
Custard 1984), and individual differences in predator quality
(Sutherland & Parker 1985).

Dynamic models will probably fail to stand up to quantitative
tests also (albeit in different ways), but for the same reason it will
not matter. If the technique can contribute to interest in new
sorts of problems then it will have made a real contribution. It
has already started to do so, as the lack of a quantitative
framework in which to incorporate stochasticity, the time di-
mension and competing demands for an animal’s attention
definitely contributed to behavioural ecologists ignoring the
importance of these factors in the past. Now, the importance of
tradeoffs, central to all sorts of decision-making, is being widely
examined both through modelling (e.g., Mace & Houston-1989)
and purely empirical work (e.g., Cuthill & Guilford 1989).

Dynamic programming involves an interaction between
nature, computers, and human brains. Nature is complex and
computers are becoming increasingly capable of describing such
complexity. The “curse of dimensionality” is as much a problem
or human understanding as it is for the power of the computer.
Computers have no problem handling four or five dimensions —
the weak link is the human brain. It is possible to create models
with morc than one state variable and several behavioural
options (and solve them numerically). But, in our experience, as
the complexity of the model exceeds one state variable or two
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behavioural options it can become increasingly hard to make
sense of the output. )

Clark’s abstract states that “limitations arise because nature’s
complexity always exceeds our modelling capacity,” but this is
not the real problem. The major challenge is to abstract the
complexities of nature in a way that will capture the imagination
of its students.

Models are just prostheses for our brains
Manfred Milinski

Zoologisches Institut, Abteilung Verhaltensbkologie, University of Bern,
Wohlenstrasse 50 a, CH-3032 Hinterkappelen, Switzerland

Without using algebra we can only make qualitative hypotheses
in our heads and express them in words. A mathematical model
is (only) a hypothesis formulated quantitatively and expressed in
numbers. There is nothing more to a model that deserves either
condemnation or glorification. The model is a tool to formulate
hypotheses for research when the natural phenomenon under
study is too complex to be handled by the limited channel
capacity of our brain. In this respect, the dynamic modeling
technique is no different from other well accepted models. It
allows us to put more realistic complexity into our hypotheses,
but at the same time it often robs us of the excuse that it is
impossible to predict a behavior quantitatively because of its
complex conditions.

As an empiricist I am as happy to have this new and more
powerful instrument as I am to have a new and more powerful
word processing program. However, in both cases the value of
the results produced with the new tool depends very much on
what I am using it for. The laborious part of the job is concealed
in sentences like the following (Clark’s abstract, emphasis
mine): “The models use biologically meaningful parameters and
variables, and lead to testable predictions.” I hope that editors
keep this in mind when they soon receive vast numbers of
manuscripts starting with “using dynamic programming tech-
niques we have demonstrated that . . .”

Let evolution take care of its own

Geoffrey F. Millera and Peter M. Toddb

Psychology Department, Jordan Hall, Building 420, Stanford University,
Stanford, CA 94305

Electronic mail: ageoffrey@psych.stanford.edu and
btodd@psych.stanford.edu

Clark’s title is somewhat misleading. Rather than modelling
behavioral adaptations per se — specific psychological mecha-
nisms capable of generating adaptive behavior — Clark’s dynam-
ic programming method computes specific behavioral se-
quences designed to optimize fitness given precalculated
adaptive pressures. Indeed, adaptive pressures are precisely
what Equation 9, the central expression of Clark’s method,
represents.

Yet Clark’s title does point in the right direction: Behavioral

- adaptations are what we want to model. Characterizing evolved

psychological mechanisms themselves is crucial to understand-
ing behavioral responses to the adaptive pressures that emerge
in complex environments, for it is at the level of mechanisms,
not individual behaviors, that analyzable regularities most clear-
ly appear. As Cosmides & Tooby (1987) argue, psychological
adaptations must serve as the intermediary between adaptive
pressures and behavioral strategies; one cannot take the short-
cut of finding bchavioral strategics directly given adaptive
pressures.

The phenomenon of protean (adaptively unpredictable) be-

BEHAVIORAL AND BRAIN SCIENCES (1991) 14:1 101



Commentary/Clark: Modeling behavioral adaptations

havior illustrates this levels-of-analysis problem. Simple pro-
teanism occurs when a rabbit flees a fox by “randomly” darting
back and forth (Driver & Humphries 1988). If the rabbit had
internalized the sort of look-up table for escape behavior sug-
gested by the dynamic programming method, always choosing
the “optimal” escape route in its attempts to maximize Equation
9, the very predictability of this behavior would render it unfit.
Foxes would evolve predictive counterstrategies. Suppose in-
stead that rabbits have not simply evolved a set of behavioral
strategies per se (as suggested by the dynamic programming
method), but a more abstract, flexible behavior-generating
mental mechanism that allows them to behave unpredictably in
certain circumstances. Although this mechanism may violate
dynamic programming optimization, perhaps causing some rab-
bits to perform suboptimally in the short term (e.g., zigging
when they “should have” zagged), this mechanism may none-
theless increase the average fitness across the subpopulation of
those rabbits possessing it. Although Houston & McNamara
(1988) allude to the possibility of dynamic programming select-
ing probability distributions across behaviors (which would
yield a kind of proteanism), the proper level of analysis here is
that of the complex protean psychological mechanisms them-
selves. These mechanisms are the true behavioral adaptations,
but ones that dynamic programming seems incapable of re-
vealing.

More seriously, dynamic programming seems unable to ade-
quately model the optimization of inclusive fitness (Hamilton
1964), rather than just individual fitness. With inclusive fitness,
there is no specifiable final time T beyond which a behavior’s
effects will not propagate; because the effects of an organism’s
behaviors may continue long after its death, affecting its kin and

offspring for many generations, there is no reasonable endpoint .

for assessing ultimate fitness. Thus our models of behavioral
adaptations must consider fitness effects of interactions between
individuals, both within and across generations, not just within
an individual’s own life-time. Dynamic programming may be
sufficiently powerful in principle to represent the interaction
contingencies of social behavior by breaking them down into
adaptive pressures impinging on organisms considered indi-
vidually. But if one tries to imagine exactly how this would work
with collaborative or competitive behaviors as complex as coali-
tional aggression or social exchange, dynamic programming
seems less than entirely efficient.

Modeling interactions with other individuals in the environ-
ment leads naturally to modeling interactions with the environ-
ment itself. This step would free us from specifying quantitative
adaptive pressures impihging on the individuals. Rather, the
adaptive pressures molding the evolution of behavioral mecha-
nisms could emerge from the dynamics of the modeled environ-
ment and the fitness function defined over it.

Finally, modeling actual reproduction and inheritance di-
rectly seems simpler than representing adaptive pressures in
terms of expected future reproduction or some other abstract
fitness construct. The reason creatures operate in accordance
with inclusive fitness is that by aiding their relatives they are
aiding the spread of their own genes — their relatives are likely to
have copies of their own genotypic specifications of phenotypic
mechanisms. Modeling inclusive fitness without actually mod-
eling the spread and recombination of genes just misses the
point. These considerations lead us to wish for a method of
modeling the evolutionary spread of successful psychological
mechanisms from one generation to the next, in response to
adaptive pressures emerging from a specified environment with
which, and within which, individuals interact.

Clark himself suggests that “An intriguing possibility is to use
the computer to emulate the evolutionary process in searching
for optimal or ESS strategies via a process of natural selection,
but to my knowledge this has not yet been attempted.” (sect. 10,
para. 7) In fact, the entire field of genetic algorithms (Goldberg
1989; Holland 1975; Schaffer 1989) and much of artificial life
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research (Langton 1989) rely on computer instantiations of
evolutionary dynamics to produce adaptive solutions to spec.
ified problems — often solutions in the form of neural or psycho.
logical mechanisms underlying behavioral strategies.

Our research, for example, uses genetic algorithms to simy.
late the evolution of neural networks that control the behavior of
simple organisms in simple virtual environments (Miller &
Todd 1990; Miller et al. 1989; Todd & Miller, in press). Ackley
(1990) has produced a more complex and suggestive model of
the evolution of adaptively behaving creatures using a similay
approach. In these models, adaptive pressures are not explicitly
represented, but emerge from the dynamics of the environment
and the interactive behavior of the simulated organisms. In aJ]
such methods, the evolutionary process itself is the search for
optimal behavioral strategies. Although no global optimum is
guaranteed to exist or to be findable in finite time, genetic
algorithms have generally proven superior to any other search
method for very large, complex search spaces with many local
optima (Goldberg 1989).

We sympathize with the desires of Houston & McNamara
(1988a) and Clark to develop computational tools for analyzing
the adaptive functions of behaviors, but we are pessimistic about
the ability of any simulation method to represent directly the
manifold adaptive pressures that emerge from even moderately
complex ecosystems. Rather, we believe that adaptive pres-
sures can be best understood indirectly, by setting up environ-
ments, simulating an evolutionary process to produce psycho-
logical and behavioral adaptations to those environments, and
comparing the resulting adaptations and behaviors to those
observed in real organisms. Dynamic programming represents
an attempt to understand the results of evolution without
simulating evolution. But we believe that evolution can take
care of its own. Simulating evolution via genetic algorithms can
automatically register the differential selection of genes and
gene complexes through the phenomenon Holland (1975) calls
intrinsic parallelism, and can include the effects of kin selection
and inclusive fitness.

Furthermore, through the application of our genetic al-
gorithm to the evolution of behavioral-producing neural net-
works our models of adaptive psychological mechanisms can
incorporate the two main advantages of the dynamic program-
ming approach: first, the use of evolved, not prespecified,
internal state variables in the generation of behavior (via recur-
rent patterns of network activation — see Elman 1988), and
second, the production of ongoing dynamic behavioral se-
quences (Jordan 1986). Moreover, our method includes the
further biologically relevant characteristics of a powerful set of
learning mechanisms (Rumelhart & McClelland 1986) and the
ability of networks to generalize adaptively to novel environ-
mental situations (a crucial adaptive capability — see Shepard
1987), obviating the need for an exhaustive dynamic program-
ming search of state-space.

Ifyou want to model what comes out of the process of evolution
(behavioral adaptations) in terms of what goes in (adaptive
pressures) then why not model the process itself? The
growing number of researchers using genetic algorithms answer
“why not, indeed?” Genetic algorithms are transparently analo-
gous to natural selection, applying concrete environmental and
social effects to genotypically coded populations of organisms
which evolve forward in time, thus performing computationally
efficient searches for adaptive responses to emergent adaptive
pressures. As such, they are an intuitively appealing, under-
standable, and tractable approach to modeling behavioral adap-
tations. Respect for the complexity of natural behavior demands
respect for the adaptive process, natural selection, which pro-
duced that complexity. And instantiating that process in our
models is the highest respect we can offer.
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