379

Designing Neural Networks using Genetic Algorithms

Geoffrey F. Miller

Peter M., Todd

Psychology Department
Stanford University, Stanford, CA 94305
geoffrey@, todd@psych.stanford.edu

Shailesh U. Hegde
Department of Computation and Neural Systems
California Institute of Technology, Pasadena, CA 91125
shailesh@aurel.caltech.edu

Abstract

We present a genetic algorithm method that evolves
neural network architectures for specific tasks. Each
network architecture is represented as a connection
constraint matrix mapped directly into a bit-string
genotype. Modified standard genetic operators act
on populations of these genotypes to produce net-
work architectures with higher fitnesses over succes-
sive generations. Architecture fitness is assessed by
training particular network instantiations and record-
ing their final performance error. Three applications
of this method to simple network mapping tasks are
discussed.

1 Introduction

A new computational paradigm is gaining popularity
throughout diverse fields ranging from psychology and cog-
nitive science to signal processing and pattern recognition.
This paradigm, parallel distributed processing (PDP), re-
places the single powerful processor of the tradition von
Neumann computer with a network of simple interconnect-
ed processing units. The network’s computational power
emerges from the collective activity of these units operating
in parallel (Rumelhart and McClelland, 1986). PDP sys-
tems are often called neural networks, based on features
shared with sets of real biological neurons. Central among
these similarities are the ability to learn mappings from a set

of inputs to a set of outputs based on training examples, and -

the ability to generalize beyond the particular examples
learned. These useful abilities have brought a surge of neur-
al network research activity in the past few years. New
leaming algorithms have been developed, mathematical
foundations have become deeper and broader, and network
models have been trained and applied to solve difficult
problems in a variety of domains. But one aspect of current
neural network research remains a bottleneck that could
seriously impair progress in the coming years if left unad-
dressed. This.bottleneck is the problem of network design.

1.1 The Problem of Network Design

The process of developing a neural network model for a
particular application typically includes the following four
stages. First, a researcher selects a problem domain, such as
visual pattern recognition or language processing, based on

his or her theoretical, empirical, or applied interests. Next,
a network architecture is designed for leaming tasks from
the application domain. This architecture forms the skeletal
structure of the network: the number of units used, their or-
ganization into layers or modules, the connections between
them, and other structural parameters. Third, given a net-
work with this architecture and some chosen task, a gradient
descent learning algorithm such as error back-propagation
trains the network by converging on appropriate connection
weights. Finally, the researcher evaluates the trained net-
work according to objective performance measures such as
ability to solve the specified task, speed of learning, and
generalization ability. This whole process can be repeated
until the desired results are obtained.

Although reasonable methods exist for executing the
other three stages, the network design stage remains some-
thing of a black art. Few rigorously established design prin-
ciples exist, so the researcher must depend on personal ex-
perience with previous designs and on the informal heuris-
tics of the neural network research community (e.g. ‘the
harder the problem, the more hidden units you need’). To
circumvent the problems associated with intuitive network
design by humans, this paper presents an automated evolu-
tionary design method based on genetic algorithms,

1.2 Reasons for Automating Network Design

Designing neural networks is hard for humans. Even small
networks can behave in ways that defy comprehension;
large, multi-layer, nonlinear networks can be downright
mystifying. Many of the basic principles governing infor-
mation processing in such networks (such as parallcl con-
straint satisfaction and distributed representation) are hard
to understand and even harder to exploit in trying to design
useful new network architectures. As a result, most neural
network research employs only a few standard architecture
types, e.g. layered feed-forward designs or simple recurrent
schemes. Those seeking radically new architectures cast off
into uncharted darkness.

Standard engineering design techniques founder on
neural networks. The complex distributed interaction
among network units usually makes even the divide-and-
conquer technique of modular design inapplicable. Further-
more, this complexity seems to preclude concocting direct
analytic design methods,

380

Miller, Todd and Hegde

The prospecis get even dimmer. Even if we find a
design sufficient for a particular task, how can we be certain
that we didn’t miss a much-preferable solution? How can
we optimize network designs given complex combinations
of performance criteria, such as learning speed, compact-
ness, generalization ability, and noise-resistance? And how
can we determine the proper design modifications required
to effect some desired change in network function?

At present, none of these questions have principled
answers. The only way to negotiate these dilemmas has
been to throw large amounis of human time and effort at
them. As network applications continue to grow in number,
size, and complexity, this human-engineering approach
must begin io break down. The problem of network design
requires a more efficient, automated solution.

1.3 Reasons for Using Genetic Search

The problem of network design comes down to searching
for an architecture which performs best on some specified
task according to some explicit performance criteria. This
process in turn can be viewed as searching the surface de-
fined by levels of trained network performance above the
space of possible neural network architectures. Since the
number of possible units and connections is unbounded, the
surface is infinitely large. Since changes in the number of
units or connections must be discrete, and can have a
discontinuous effect on the network’s performance, the sur-
face is undifferentiable. The mapping from network design
10 network performance after learning is indirect, strongly
epistatic, and dependent on initial conditions (e.g. random
starting weights), so the surface is complex and noisy.
Structurally similar networks can show very different infor-
mation processing capabilities, so the surface is deceptive;
conversely, structurally dissimilar networks can show very
similar capabilities, so the surface is multimodal. We seek
an automated method for searching this vast, undifferenti-
able, epistatic, complex, noisy, deceptive, multimodal sur-
face.

Enumerative search methods are sure to bog down in
the combinatorially explosive space of network architec-
tures. Random search methods are no better than enumera-
tive methods in the long run, so are equally unlikely to find

useful designs. Gradient descent search methods will also

fail because they require a differentiable surface with well-
defined slopes, and because they are poor at searching com-
plex, deceptive surfaces with many local minima. Heuristic
knowledge-guided search by a human designer is, for rea-
sons discussed earlier, likely to be inefficient, misdirected,
slow, and costly. '

Holland’s (1975) schema theorem indicated the gen-
eral utility of genetic search for large, complex, deceptive
problem spaces. Thus, in contrast to the above search tech-
niques, genetic algorithms might allow fast, robust evolu-
tion of genotypes specifying useful network architectures.
Therefore, we propose using genetic algorithms as the ap-
propriate evolutionary search technique to automate neural
network design.

1.4 Previous Evolutionary Approaches

Evolutionary design of cognitive systems has had a long and
sporadic history. One early method called evolutionary pro-
gramming (Fogel, Owens, and Walsh, 1966) attempted to
evolve finite state machines that would predict the next state
of a world given previously witmessed states, using a muta-
tion operator yielding a nonregressive random walk search,
More recently, another mutational approach has been ap-
plied to individual systems learning in simple environments
(Dress, 1987). Mutation and fitness-based reproduction in
competing populations of automata have also been explored
(Bergman and Kerszberg, 1987).

Genetic algorithms have been applied to neural net-
works recently in two main ways. First, there have been at-
tempts to use genetic search instead of learning to find ap-
propriate connection weights in fixed architectures. For ex-
ample, Miller (1988), Whitley and Hanson (1989), and
Montana and Davis (1989) compared genetic search to
gradient-descent learning for particular network designs and
problem domains, but the results have been ambiguous. Al-
ternatively, genetic algorithms have been used to find net-
work architectures themselves, which are then trained and
evaluated using some learning procedure. Guha, Harp, and
Samad (1988; also these proceedings) used an architecture
representation based on groups of units with probabilistic
projections between them. Todd (1988) introduced the ap-
proach described here.

2 The Genetic Algorithm: Overview

QOur method of automating neural network architecture
design combines two adaptive processes: genetic search
through the network architecture space, and backpropaga-
tion learning in individual networks to evaluate the selected
architectures. Thus, in our method, as in real biological sys-
tems, cycles of learning in individuals are nested within cy-
cles of evolution in populations. Each learning cycle
presents an individual neural network--an instantiation of a
particular network architecture--with the set of input-output
pairs defining the task. The backpropagation learning algo-
rithm then compares the network’s actual outputs with the
desired outputs, and modifies the network’s connection
weights so that it performs the desired input/output mapping
task more accurately. Each evolution cycle processes one
population of network designs according to their associated
fitness values (computed during the learning cycles) to yield
an offspring population of more highly adapted network
designs.

2.1 Network Representation Scheme

Different network representation strategies can be categor-
ized according to their degree of developmental specifica-
tion: the specificity of the mapping from genotype to pheno-
type. Weak specification representation schemes use rela-
tively abstract genetic ‘blueprints’ that must be translated
through some ‘developmental machinery’ to yield a network
phenotype (e.g. Guha, Harp, & Samad, 1988). Such
schemes may be good at capturing the architectural regulari-
ties of large metworks rather efficiently. However, they
necessarily involve either severe constraints on the network
search space, or stochastic specification of individual con-

1

ICGA'89/Designing Neural Networks using Genetic Algorithms

nections. For example, a weak specification scheme could
represent whole network layers in single genes, facilitating
the recombination and evaluation of large, highly regular
networks, but precluding detailed connection design.

Strong. specification schemes, which interpret genes
more directly as individual connections, are good at captur-
ing the connectivity patterns within smaller networks very
precisely and deterministically. Such a scheme could facili-
tate the rapid evolution of finely optimized, compact archi-
tectures. A variety of moderate specification schemes are
also possible.

We chose a strong specification scheme to gain
greater resistance to human design biases for crisply articu-
lated network layers, localist representations, and easily in-
terpretable processing strategies, all of which can creep into
weak specification schemes, A strong specification scheme
may facilitate the rapid generation and optimization of tight-
ly pruned, interesting designs that no one has hit upon be-
fore. We hope that the inspection of such streamlined
designs will hone our intuitions about what weak specifica-
tion schemes might work well for larger network designs.

In our particular strong specification scheme (Figure
1), we represent the architecture of a network of N units by
a connectivity constraint matrix, C, of dimension Nx(N+1).
The first N columns of matrix C specify the constraints on
the connections between the N units, while the final (N+1)
column contains the constraints for the threshold biases of
each unit. (A bias can be thought of as a connection to an
extra unif which is always "on" with a value of 1.0.)

Each entry Ci . in the matrix C is a member of the
connectivity constraint set, S, and indicates the nature of the
constraint on the connection from unit j to unit i (or on unit
i’s bias if j=N+1). Thus, column i of C represents the con-
straints on the the fan-out of connections from unit i. Simi-
larly, row j represents the constraints on the fan-in of con-
nections to unit j.

The elements in S specify different types of connec-
tion constraints: for instance, connection weights could be
fixed at some constant numeric value (indicated by a specif-
ic value entered in C), leamable to any value (indicated by
an L), learnable but restricted to positive values (L+), or
learnable but restricted to negative values (L). In our
current implementation, S has only two elements: 0 (fixed
at zero: no connection) and L (learnable). An example of a
constraint matrix C for a network with 5 units (with 2 input
units and a single output unit) is shown in Figure 1, along
with the actual corresponding architecture. ’

We convert the network architectures, specified here
in connection constraint matrix form, to a bit-string geno-
type as shown in Figure 1. Since the constraint set S has
been restricted for now to only two values (0 and L), each
entry in C is coded by a single bit. Successive rows in C are
then concatenated to form a bit-string of length N*(N+1),
which enters the genotype population to be processed by the
genetic operators.

2.2 Genetic Operators

In our current implementation the crossover operator selects
a random row number i from 1 to N and swaps all the en-
tries in that row of C between two parents. We use this
form of crossover because it is easy to implement in the
bit-string genotype, and because each row of C specifies a
functional building block composed of a single unit. Each
such building block incorporates both the unit’s bias and its
fan-in connections (i.e. its ‘receptive field’), thereby speci-
fying all the information that unit receives, and thus what
sort of function it can compute.

We are currently exploring other forms of crossover,
such as swapping multiple rows, single or multiple columns,
cross-shaped regions, or rectangular submatrices of C. The
main goal is to develop crossover operators which work
with our strong specification scheme to swap functionally
cohesive portions of network structure. Note that our specif-
ication scheme ensures that all of these crossover operators
are well-defined, always producing valid new network ar-
chitectures. This eliminates the extra offspring-checking
procedures required by some weak specification schemes.

Our standard mutation operator goes through each en-
try in C and randomly chooses a new constraint (0 or L)
with some (low) specified probability. Note that any given
matrix C can be transformed to any other C by a series of
mutations. Thus, mutation alone suffices to explore the
space of C matrices, ensuring that our genetic search can
cover the entire N-unif network architecture space.

Finally, our system also uses fitness-proportionate
reproduction, including Grefenstetie’s (1987) fitness scaling
routine, based on the fitmess evaluation procedure described
next.

2.3 Fitness Evaluation

Performance measures for evaluating the fitness of alternate
network architectures should be chosen carefully to reflect
the design criteria judged important for a given network ap-

from unit: 1 2 3 4 5 Dbias
to unit: 1 00000 0 —= 000000
2 0 00O00O 0 — s Q00000 ‘
3 LLOOO L 110001 e
4 LLOO0OO L 110001 :
5 0 0LLO L 001101

{

0000000000001100011120001001101

A B

Figure 1. The conversion process from connectivity constraint matrix C at left, to bit-string genotype, center, to network architecture

phenotype, right.

381

382

Miller, Todd and Hegde

plication. Our major criterion has been ability to success-
fully learn the input-output mappings specified by each task.
A more complex weighted fitness function could include
further criteria, such as generalization ability or number of
connections used in the network.

Our current method for evaluating a particular
architecture’s fitness proceeds as follows. First, a particular
instantiation of the architecture is created with learnable
connections where the matrix C has an entry L, and no con-
nections where the entry is 0. Learnable connections are in-
itialized with small random weights. (We currently ignore
any connections to input units, and any feedback connec-
tions specified in the genotype, since including these would
complicate the learning process considerably. Thus for now
we restrict ourselves to feedforward networks.)

This initial network instantiation is then trained for a
certain number of epochs (cycles through all the training
pairs for the current task) using the back-propagation learn-
ing rule. The total sum squared error (TSSE) of each
network’s performance at the last epoch ultimately deter-
mines the network’s fitness. Since low TSSEs correspond
to better learning of the task at hand, raw fitess is comput-
ed by subtracting the actual TSSE from a constant TSSE
representing chance performance on the given task.

3 Empirical Method

We merged Grefenstette’s (1987) genetic algorithm system,
GENESIS 4.5, with Rumelhart and McClelland’s (1988)
back-propagation system for training multilayer networks,
bp, to yield a system called Innervator for evolving neural
network architectures. Innervator was named for the inno-
vative, evolutionarily constrained process of innervation
whereby neural connectivity patterns develop in individual
biological nervous systems,

All empirical studies were run on Sun 4/260 worksta-
tions. Typical runs to train and evaluate a single generation
of 50 S-unit network architectures (such as in the XOR
problem to be described shortly), with 1000 learning epochs
of 4 training patterns each per network, required about 10
minutes of computer time. Thus, it often took less than an
hour to evolve successful new network architectures for the
relatively small problem domains we investigated.

Unless otherwise noted, all Innervator system runs
described here used a population size of 50, a crossover rate
of 0.6, and a bitwise mutation rate of 0.005. The "elitist"
reproduction strategy was used, ensuring that the best indi-
vidual in a given generation was kept in the next. Because
the network training evaluation process is noisy (depending
on the initial random weights of each architecture instantia-
tion), each architecture was evaluated every time it ap-
peared in the population, rather than carrying over a
previously-found fitness value. Finally, network training
parameters must vary according to the application task, so
they are described separately for each task in the following
sections.

4 Empirical Results

Since our strong architectural specification scheme is partic-
ularly suited for evolving highly specialized network struc-
tures with exact patterns of connections, we began applying

Innervator to some relatively small tasks where such struc-
tural precision should be useful. Our goal was to see wheth-
er our genetic algorithm could discover successful architec-
tural solutions for each task, and whether the population
would converge to these solutions. Our results were as fol-
lows.

4.1 Run 1: XOR Problem

The much-studied exclusive-OR (XOR) Boolean function
served as our first application task. The XOR function
maps two binary inputs to a single binary output as follows;
000, 01-1, 101, 11-0. This is the simplest Boolean
function which is not linearly separable--i.e. cannot be
solved by a simple mapping directly from the inputs to the
output--and so requires the use of extra "hidden units" to
learn the task (Minsky and Papert, 1969). The standard net-
work architectures for leamning the XOR problem contain 4
or 5 units (see Figure 2a,b). Since we were curious which
known or novel compact architectures Innervator might dis-
cover, we set it to search for XOR architectures with 5 or
fewer units. ‘

For the network training portion of the architecture
evaluation, we used the following parameters: the learning
rate was set at 0.4, the momentum (used to smooth out
learning) was set at 0.8, and the number of training epochs
(cycles through all 4 training patterns) was set at 1000,
These values were chosen because they were found suffi- .
cient for properly-designed XOR architectures to learn the

" mapping.

The results were encouraging. In the initial popula-
tion, the best network architecture achieved a fitness of 0.75
(out of a maximum of 1.0), indicating that it was not suffi-
cient to fully solve the XOR task. After one generation,
though, the maximum fitness rose to 0.99--thus just a single
generation of reproduction, crossover, and mutation sufficed
to discover an architecture which accurately leamned the
XOR task. Within 10 generations (500 evaluations), the po-
pulation converged on a single successful architecture.

Populations in several different runs converged upon
the network architecture shown in Figure 2c. It is essential-
ly the standard 5-unit XOR network architecture, but with
an extra connection from one input unit to the output unit.
After training, all of the connections in this architecture are
used (i.e. have substantial weights). The extra connection
from input to output may allow faster weight adjustment -
and symmetry-breaking, leading to faster learning of the
XOR task.

a. b.

Figure 2. Architectural solutions for the XOR problem. a. Stan-
dard 4-unit architecture. b. Standard 5-unit architecture. c. Typi-
cal discovered 5-unit architecture,

ICGA'89/Designing Neural Networks using Genetic Algorithms

4.2 Run 2: Four-Quadrant Problem

Our second application was a more advanced version of the
XOR problem known as the two-dimensional XOR or four-
quadrant problem. As in the simple XOR problem, two in-
puts are mapped to a single binary output, but here the in-
puts are both real numbers ranging from 0.0 to 1.0 inclusive.
The two inputs can be considered the x and y coordinates of
a point in the unit square. The mapping to be learned is from
all points in the lower left and upper right quarters of this
square to an output of 0.0, and from all points in the other
two quarters to 1.0, as shown in Figure 3a.

Two types of architectural solutions to the four-
quadrant problem have been discussed. First, a one-hidden-
layer feedforward network can solve this problem to arbi-
trary precision, given enough units in the hidden layer (Fig-
ure 3b). But with two hidden layers, a second, smaller solu-
tion becomes possible (Figure 3c). The mapping can be

‘learned with just two units in the first hidden layer, which
convert all real inputs to 0’s and 1’s, and two units in the
second, which compute the standard XOR function on these
converted values. We hoped that, when Innervator was
constrained to search for architectures with 7 or fewer units,
it would discover the more accurate (and in some ways
more complex) two-hidden-layer solution.

Networks in this run were trained for 200 epochs,
with each epoch cycling through a fixed set of 500 random-
ly generated x-y input pairs. A lower learning rate of 0.05
was used for this more complex task, with a higher momen-
tum of 0.9.

Some successful architectures appeared in the initial

population. Other solutions appeared in successive genera-
tions, and the population as a whole slowly increased in
average performance over 10 generations. The architec-
tures discovered, though, were not what we expected. Rath-
er than clean three- or four-layer structures, these networks
tended to be asymmetric, unlayered, and somewhat convo-
lated. (e.g. Figure 3d). As a result, it is quite difficult to
analyze exactly how such networks perform the four-
quadrant mapping. One common feature of these evolved
structures, though, as for Innervator’s XOR network archi-
tecture presented earlier, is the presence of direct connec-
tions from the input units to the output unit. Again we be-
lieve that such connections, by partly increasing the direct-
ness of the mapping computed, help to speed up learning in

1_04 ferreersenian,
' H
' :
1 . 0
! :
input 2 lece=== % ;
' o
! .
0 ' 1 :
¥ :
1] -
i L
0.0 input 1 1.0

these networks.

Innervator’s discovery of unexpected, difficult-to-
interpret architectures can be considered a validation of our
approach, rather than a drawback. The layered architectures
previously proposed for the four-quadrant problem conform
to the biases of the humans who designed them; by remov-
ing these biases from Innervator, new, and perhaps better,
architectures were found.

4.3 Run 3: Pattern Copying

The fact that Innervator found architectural solutions to the
previous problems in very few generations suggests that
genetic recombination may not have played a very impor-
tant role in its search. To more rigorously test Innervator’s
search ability (specifically, our row-wise crossover opera-
tor), we applied it to a task where mutation alone would
take many generations to find a solution architecture. The
task we selected is simple pattern copying, where the binary
pattern presented to the input units must be copied exactly
to the output units. All that this copying requires is a con-
nection directly from input 1 to output 1, from input 2 o0
output 2, and so on, for as many inputs and outputs as there
are in the network. No hidden units are needed for this task.

We used 10 input units and 10 output units in this ex-
periment, thereby requiring that 10 direct connections be
present in the network architecture for the mapping to be
properly learned. Since each entry in the connectivity con-
straint matrix C can be either 0 or L, there is a 0.5 chance
that any given connection will be learnable (have constraint
L) in each randomly generated architecture of the initial po-
pulation. The chance that all 10 necessary connections will
appear in a single architecture is 0.5710, or 1/1024; since the
initial population contains 50 randomly generated architec-
tures, the overall chance that an appropriate one will appear
there is 50%1/1024, or about 1 in 20. By extension, mutation
alone would take 20 generations on average to find a solu-
tion architecture.

Since pattern copying is a simple task learnable by a
two-layer network architecture without encountering local
minima, we can use a very high learning rate, 1.0, and a
momentum of 0.9. The high learning rate in turn means that
few epochs are needed. Each network in this experiment
was trained for 5 epochs on all 1024 10-bit patterns.

As expected, no solutions were generated in the initial
populations of several runs (e.g. see the graph of maximum

Figure 3. The four-quadrant problem. a. 2-d mapping to be learned. b. Standard 3-layer architectural solution. c. Standard 4-layer archi-

tectural solution. d. Typical discovered architectural solution.

383

384

Miller, Todd and Hegde

o —/_/—_' .
500 |-

[72] ,
3 /
£ -1000 r 7
.L-x;: /’,
1500 |/
! ——— Best
L s Average
'2000 n 1 i 1 £
0 5 10 15 20
Generation

Figure 4. Innervator’s genetic search performance on the pattern
copying task: best and average fitnesses from an example run.
Chance fitness = 2560; ceiling fitness = 0; inverse fitnesses are
plotted for ease of comparison.

fitness for one example run in Figure 4). A successful solu-
tion was typically found within 6 generations, and the popu-
lations typically converged very strongly within 15 genera-
tions. This performance beats the 20-generation expected
search time using random architecture generation by muta-

tion. These resulis lend validation to our row-swapping.

crossover operator as a method for reshuffling appropriate
network building blocks throughout the population. More
generally, Innervator’s performance on this pattern copying
task suggests that it could perform powerful searches
through the space of network architectures for other appli-
cations.

5 Conclusions

The Innervator system rapidly evolves neural network ar-
chitectures capable of learning to perform simple mapping
problems. We are currently testing it on larger, more diffi-
cult domains, such as position-invariant pattern recognition
and visual stereoscopic depth perception. Our strong
specification scheme does allow the development of highly
specific, often unexpected designs. However, we believe
that alternate representation schemes, genetic operators, fit-
ness evaluation methods, and genetic algorithm parameters
could yield still faster, more robust neural network evolu-
tion across a variety of domains. We are investigating a
number of options, including weaker specification schemes
incorporating a. connectivity development stage before
leamning; operators that handle functional groups of units
simultaneously; and fitness measures including network size
costs, to help eliminate unused connections.

The results in this paper represent the early stages of a
long-term research program aimed at developing a power-
ful, flexible computer system for simulating the adaptive
processes of evolution, development, leaming, and
information-processing for neural networks in complex vir-
tual environments. Such a system would have applications
in biological, neurological, and psychological modelling, as
well as the engineering and design applications emphasized
in this report. Our immediate goal has been to free the net-
work decion nroceee from the con<irainte of hiiman hiases

and to discover new forms of neural network architectures
applicable to a variety of domains. The automation of net-
work architecture search by genetic algorithms seems the
best way to achieve this timely goal.

References

Bergman, A., & Kerszberg, M. (1987). Breeding intelligent
automata. In Proceedings of the IEEE First Inter-
national Conference on Neural Networks. San
Diego: SOS Printing.

Dress, W.B. (1987). Darwinian optimization of synthetic
neural systems. In Proceedings of the IEEE First
International Conference on Neural Networks. San
Diego: SOS Printing.

Fogel, L.J., Owens, AJ., & Walsh, M.J. (1966). Artificial
mzellzgence through simulated evolution. New
York: John Wiley & Sons.

Guha, A., Harp, S.A., & Samad, T. (1988). Genetic syn-
thesis of neural networks. Honeywell Corporate
Systems Development Division. Technical report
CSDD-88-14852-CC-1.

McClelland, JL., & Rumelhart, D.E. (1988). Explorations
in parallel distributed processing: A handbook of
models, programs, and exercises. Cambridge, MA:
MIT Press/Bradford Books.

Miller, G.F. (1988). Evolution and learning in adaptive net-
works. Psychology Department, Stanford Universi-
ty. Unpublished manuscript.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambndge
MA MIT Press.

Montana, D.J., & Davis, L. (1989). Training feedforward
neural networks using genetic algorithms. BBN
Systems and Technologies, Inc. Technical report,

Rumelhart, D.E., & McClelland, J.L. (Eds.) (1986). Parallel
distributed processing: Explorations in the micros-
tructure of cognition. Cambridge, MA: MIT
Press/Bradford Books.

Todd, P.M. (1988). Evolutionary methods for connectionist
architectures. Psychology Department, Stanford
University. Unpublished manuscript.

Whitley, D., & Hanson, T. (1989). The GENITOR algo-
rzthm Using genetic recombination to optimize
neural networks. Computer Science Department,
Colorado State University. Technical report.

- 'This research was supported by National Science Foundation Gra-

duate Fellowships. Any opinions, findings, conclusions, or recom-
mendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science -
Foundation. Copyright © 1989.

